9 класс Вариант 1

1. Простой теплообмен. Теплоизолированный сосуд разделен теплоизолирующей перегородкой. В одной части сосуда находится жидкость с удельной теплоёмкостью C_L в другой части сосуда тоже жидкость с удельной теплоёмкостью C_2 . После того как убрали перегородку, в сосуде установилась температура такая, что разность между максимальной температурой и установившейся в сосуде, оказывается в 1,5 раза меньше разности начальных температур жидкостей. Найдите отношение масс жидкостей. (30 баллов)

Решение:

Запишем уравнение теплового баланса:

$$C_1 m_1 (T_3 - T_1) + C_2 m_2 (T_3 - T_2) = 0$$
 (1)

$$C_1 m_1 (I_3 - I_1) + C_2 m_2 (I_3 - I_2) = 0$$
Выразим температуру T_3 :
$$T_3 = \frac{C_1 m_1 T_1 + C_2 m_2 T_2}{C_1 m_1 + C_2 m_2}.$$
(2)

В задаче не сказано температура какого тела выше, поэтому будем решать задачу для двух случае в общем виде. Установившаяся температура всегда меньше максимальной. Примем отношение разности начальных температур к разности между максимальной и полученной за величину п:

Первый случай. Пусть $T_1 > T_2$, тогда разность температур, составляет:

$$n(T_1 - T_3) = T_1 - T_2 (3)$$

$$\Pi(T_1 - T_3) - T_1 - T_2$$
Подставим уравнение (2) в (3) ;
$$n\left(T_1 - \frac{C_1 m_1 T_1 + C_2 m_2 T_2}{C_1 m_1 + C_2 m_2}\right) = T_1 - T_2.$$
(4)

Выразим отношение масс

$$\frac{\mathbf{m}_1}{\mathbf{m}_2} = \frac{(\mathbf{n} - 1)C_2(\mathbf{T}_2 - \mathbf{T}_1)}{\mathbf{T}_2C_1 - \mathbf{T}_1C_1} = \frac{(\mathbf{n} - 1)C_2}{C_1}$$
 (5)

Рассмотрим второй случай. Пусть

Пусть $T_2 > T_1$, тогда разность температур, составляет:

$$n(T_2 - T_3) = T_2 - T_1 (6)$$

Подставим уравнение (2) в (3);

$$n\left(T_2 - \frac{C_1 m_1 T_1 + C_2 m_2 T_2}{C_1 m_1 + C_2 m_2}\right) = T_2 - T_1. \tag{7}$$

Выразим отношение масс

$$\frac{m_1}{m_2} = \frac{T_2 - T_1}{(n-1)(T_2 - T_1)} \frac{C_2}{C_1} = \frac{1}{(n-1)} \frac{C_2}{C_1}$$
(8)

Видно, что уравнения (5) и (8) по сути своей одно и тоже, т.е. отношение массы $m_{\text{мах}}$ при

максимальной температуре к массе
$$m_{\text{мин}}$$
 при минимальной температуре равно:
$$\frac{m_{\text{мах}}}{m_{\text{мин}}} = \frac{(n-1)C_2}{C_1} \tag{9}$$

По условию задачи n=1,5.

Получаем отношение масс в случае, если

1) $T_1 > T_2$:

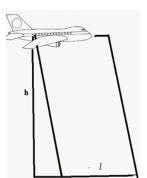
$$\frac{m_1}{m_2} = \frac{0.5C_2}{C_1};\tag{10}$$

2)
$$T_2 > T_1$$

 $\frac{m_1}{m_2} = 2\frac{C_2}{C_1}.$ (11)

Критерии оценивания:

	Критерий	Количество баллов
1	Записано уравнение теплового баланса	2
2	Выражена конечная температура смеси Т ₃	2
3	Указано, что возможны два случая	2
4	Получено уравнение (5) или уравнение (10)	12
5	Получено уравнение (5) или уравнение (10)	12


2. Пассажир авиарейса «Красноярск-Пхукет» знает, что самолёт летит на высоте 10 км с собственной скоростью $v_1 = 900$ км/час. Ветер на этих высотах дует приблизительно с одинаковой скорость $v_2 = 100 \frac{\kappa_M}{\kappa_{AG}}$ как в прямом направлении, так и в обратном направлении. Ветер дует параллельно курсу. Наблюдая в иллюминатор, пассажир увидел, что время пролета одного и того же городка отличается на $\Delta t = 18$ с. Определите линейные размеры городка. Пассажир видит город под углом 30°. (10 баллов)

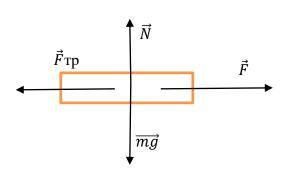
Решение:

Время пролёта самолёта не зависит от угла, под которым его видит пассажир, и можно считать, что вращение Земли не существенно, так самолёт летит с севера на юг и обратно, поэтому длина города будет равна:

$$l = (v_1 + v_2)t_1$$
- самолёт летит по ветру; (12)

 $l = (v_1 + v_2)t_1 = (v_1 - v_2)(t_1 + \Delta t)$ – самолёт летит против ветра.

Найдём время
$$t_1$$
:
$$t_1 = \frac{v_1 - v_2}{2v_2} \Delta t \tag{13}$$


Определим длину города

$$l = \frac{v_1^2 - v_2^2}{2v_2} \Delta t = 20000 \text{ M} = 20 \text{ KM}.$$
 (14)

	Критерии	Баллы
1	Указано, что не важно под каким углом пассажир смотрит на появляющийся городок под крылом	1
2	Записаны формулы для расчета длины городка как в прямом, так и в обратном направлении (по 2 балла за формулу)	4
3	Выведена формула для расчета времени t_1 или t_2	2
4	Записана формула для расчета длины городка	2
5	Получено численное значение длины	1
	Итого	10

3. Любишь кататься – люби и саночки возить! Мальчик Вася, решил экспериментально выяснить какую массу m снега и на какое расстояние он сможет вывести в снежную погоду на детских санках, линейные размеры которых $S_0 = a \times b =$ $0.4 \times 0.8 \,\mathrm{m}^2$, где a- ширина, b- длина, масса санок $m_0=3.5 \,\mathrm{kr}$. Помогите ему рассчитать работу, которую при этом совершает. Коэффициент трения полозьев санок о поверхность снега f = 0.05масса снега падающего в единицу времени на единицу площади $\mu = 3 \frac{\kappa \Gamma}{M^2 \cdot c}$ свободного $g = 9.8 \text{ m/c}^2$. ускорение падения Василий может прикладывать силу тяги F=200 Н. Средняя скорость Василия санкам по всему пути составляет v = 3 м/с. (20 баллов)

Решение:

Рассмотри момент времени остановки санок.

Запишем второй закон Ньютона в векторной форме.

$$\vec{N} + \vec{F} + \overline{mg} + \vec{F}_{TD} = 0 \tag{15}$$

В момент времени t остановки санок их масса со снегом будет равна:

$$m = m_0 + m = m_0 + \mu S_0 t \tag{16}$$

Сделаем проекцию уравнение (14) по осям:

$$F - F_{\text{T}p} = 0$$

$$N - mg = 0 \tag{17}$$

Сила трения равна^

$$F_{\rm Tp} = \mu \, \text{N} \tag{19}$$

Силу трения мы получим из уравнений (16), (17) и (18):

$$F = F_{\rm Tp} = f(m_0 + m)g$$
 (20)

Рассчитаем из уравнения (20) массу, которую мальчик может сдвинуть:

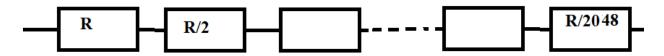
$$m = \frac{F}{fg} - m_0 = 404,7 \text{ кг} \tag{21}$$

Определим время, которое двигались санки:

$$t = \frac{m}{\mu S_0} = 421,6 \text{ c} \tag{22}$$

Расстояние, которое прошли санки до остановки.

$$l = v \cdot t = 1264,7 \text{ M}. \tag{23}$$


Рассчитаем работу, совершенную Василием:

$$A = F \cdot l = 252937 \, \text{Дж} = 253 \, \text{к} \, \text{Дж}.$$
 (24)

	Критерий	Количество баллов
1	Сделан рисунок с силами	3
2	Записан второй закон Ньютона в векторной форме:	1
3	Сделаны проекции сил по осям:	
	1) По оси х	2
	2) По оси у	2
4	Записана связь силы трения с силой нормальной реакции	1
5	Записана формула масса санок со снегом	3
6	Выведена формула для определения массы снега	3
7	Подсчитана масса максимального снега	1
8	Записана формула для определения расстояния, которое проехали	1
	санки до остановки	
9	Получен результат для расстояния	1

10	Записана формула для работы	1
11	Получен результат для работы	1
	Итого	20

4. Последовательно соединены сопротивления, каждое последующее (смотри рисунок, расположенный ниже). раза меньше предыдущего Во сколько раз изменится потребляемая мощность цепью, если к ней параллельно присоединить ещё одно сопротивление R_1 =30 Ом. Примите R=30 Ом. (20 баллов)

Решение:

Рассмотрим последовательное соединение. Полное сопротивление цепи R_{06} рассчитаем по формуле

$$R_{06} = R\left(1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2048}\right). \tag{25}$$

Таким образом, чтобы найти сопротивление этой цепи надо найти сумму ряда, в котором

$$q = \frac{1}{2}$$
 — знаменатель прогрессии; (26)

$$b_1 = 1$$
 — первый член прогрессии; (27)

$$b_1 = 1$$
 — первый член прогрессии; (27) $b_n = (q)^{n-1} = \frac{1}{2048}$ — последний член прогрессии. (28)

Определим из уравнения (38) количество членов:

$$2^{n-1} = 2048, (29)$$

Определить n не составляет особого труда, если помнить что $2^{10} = 1024$, поэтому n-1=11, следовательно количество членов прогрессии равно n=12. Найдем полное:

$$R_{06} = R \frac{b_1(q^n - 1)}{q - 1} \approx 60 \text{ Om.}$$
 (30)

Присоединим к последовательной цепи параллельно сопротивление R. Общее сопротивление цепи будет составлять:

$$R_2 = \frac{R_1 \cdot R_0 \delta}{R_1 + R_0 \delta} = 20 \text{ Om.}$$
 (31)

Мощность, потребляемая только последовательной цепочкой сопротивлений:

$$P_1 = \frac{U^2}{R_{06}} \tag{32}$$

Мощность, потребляемая цепью с параллельно включенным R:

$$P_2 = \frac{U^2}{R_2}$$
 (33)

Отношение мощностей:

$$\frac{P_1}{P_2} = \frac{R_2}{R_{06}} = 0.33 \tag{34}$$

	Критерий	Количество
		баллов
1	Записана формула для расчета последовательной цепи в общем виде	2
2	Указано, что сопротивление такой цепочки считается как сумма	3
	геометрической прогрессии	
3	Записана формула для расчета сопротивления с помощью суммы ряда	6
4	Получено численное значение сопротивления цепочки	1
5	Записана формула для расчета сопротивления при параллельном подключении	2
6	Получено численное значение сопротивления параллельном соединении	1
7	Записаны формулы для расчета потребляемой мощности	2
	По баллу за формулы	
8	Получена формула для расчета отношений мощностей	2
9	Получено численное значение отношения мощностей	1
	Итого:	20

5. Высокоскоростные самолёты летают на высотах от 7 км до 13 км. Пользуясь графиком зависимости плотности атмосферы над уровнем моря, определите с какой скоростью v_1 должен лететь самолёт на высоте 7 км, чтобы его потребляемая мощность равнялась мощности, развиваемой им на высоте 13 км. На высоте 13 км самолёт летит со скоростью $v_2 = 900$ км/час.

Считайте, что:

- 1) самолёт движется равномерно прямолинейно с постоянной скоростью одинаковой на обеих высотах;
- 2) сила сопротивления со стороны воздуха прямо пропорциональна плотности, скорости и площади лобового сечения самолёта, т.е. $F = \alpha \rho s v$, где α зависит от конструкции самолета. (20 баллов)

Решение:

Так как самолёт летит равномерно, то сила тяги самолёта уравновешивает силу сопротивления, действующую на самолёт со стороны воздуха.

$$F = F_c = \alpha \rho v S \tag{35}$$

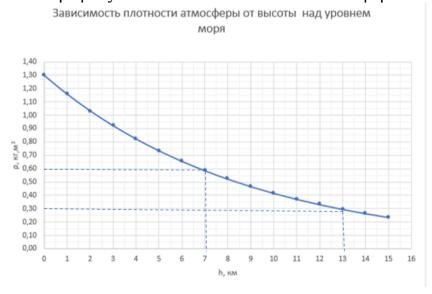
Мощность находится по формуле

$$P = Fv = \alpha \rho v^2 s \tag{36}$$

Мощности самолёта на разных высотах равны соответственно:

$$P_1 = \alpha \rho_1 v_1^2 S \tag{37}$$

$$P_2 = \alpha \rho_2 v_2^2 S \tag{38}$$


По условию задачи
$$P_1 = P_2$$
, (39)

Из уравнений (16), (17) и (23) выразим скорость:

$$v_{1} = \sqrt{\frac{\rho_2}{\rho_1}} v_2, \tag{40}$$

где ρ_2 =0,3 кг/м³ плотность воздуха на высоте 13 км, ρ_1 = 0,6 кг/м³ плотность воздуха на высоте 7 км.

Плотности определяем по графику зависимости плотности атмосферы от высоты.

Подставим значения плотностей формулу (40) и получим значение скорости на высоте 7 км;

$$v_{1=}\sqrt{\frac{0.3}{0.6}}900 = 636.4 \text{ km/qac}$$
 (41)

	Критерий	Количество
		баллов
1	Записана формула для мощности	2
2	Указано, что сила сопротивления равна силе тяги	4
3	Получена формула для расчета мощности с учетом силы сопротивления	4
4	Записаны формулы для расчета мощностей на различных высотах, по одному баллу за формулу	2
5	Выведена формула для скорости на высоте h_1	4
6	По графику определены значения плотностей, по одному баллу за каждое значение	2
7	Получено численное значение скорости на высоте	2
	Итого:	20

9 класс Вариант 2

1. Простой теплообмен. Теплоизолированный сосуд разделен теплоизолирующей перегородкой. В одной части сосуда находится жидкость массой m_1 в другой части сосуда тоже жидкость массой та. После того как убрали перегородку, в сосуде установилась температура такая, что разность между максимальной температурой, и установившейся в сосуде, оказывается в 2,5 раза меньше разности начальных температур жидкостей. Найдите отношение удельных теплоёмкостей жидкостей. (30 баллов).

Решение:

Запишем уравнение теплового баланса:

$$C_1 m_1 (T_3 - T_1) + C_2 m_2 (T_3 - T_2) = 0$$
 (1)

Выразим температуру Т₃:

$$T_3 = \frac{C_1 m_1 T_1 + C_2 m_2 T_2}{C_1 m_1 + C_2 m_2}. (2)$$

В задаче не сказано температура какого тела выше, поэтому будем решать задачу для двух случае в общем виде. Установившаяся температура всегда меньше максимальной. Примем отношение разности начальных температур к разности между максимальной и полученной за величину n:

Первый случай. Пусть $T_1 > T_2$, тогда разность температур, составляет:

$$n(T_1 - T_3) = T_1 - T_2 (3)$$

Подставим уравнение (2) в (3);

$$n\left(T_1 - \frac{C_1 m_1 T_1 + C_2 m_2 T_2}{C_1 m_1 + C_2 m_2}\right) = T_1 - T_2. \tag{4}$$

Выразим отношение масс:

$$\frac{C_1}{C_2} = \frac{(n-1)C_2(T_2 - T_1)}{T_2C_1 - T_1C_1} = \frac{(n-1)m_2}{m_1}$$
 (5)

Рассмотрим второй случай. Пусть

Пусть $T_2 > T_1$, тогда разность температур, составляет:

$$n(T_2 - T_3) = T_2 - T_1 (6)$$

$$n(T_2 - T_3) = T_2 - T_1$$
 (6) Подставим уравнение (2) в (3);
$$n\left(T_2 - \frac{C_1m_1T_1 + C_2m_2T_2}{C_1m_1 + C_2m_2}\right) = T_2 - T_1.$$
 Выразим отношение теплоёмкостей:

Выразим отношение теплоёмкостей

$$\frac{C_1}{C_2} = \frac{T_2 - T_1}{(n-1)(T_2 - T_1)} \frac{C_2}{C_1} = \frac{1}{(n-1)} \frac{m_2}{m_1}$$
(8)

Видно, что уравнения (5) и (8) по сути своей одно и тоже, т.е. отношение массы $m_{\text{мах}}$ при максимальной температуре к массе тими при минимальной температуре равно:

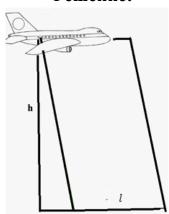
$$\frac{\mathrm{m}_{\mathrm{MAX}}}{\mathrm{m}_{\mathrm{MHH}}} = \frac{(\mathrm{n}-1)\mathrm{C}_2}{\mathrm{C}_1} \tag{9}$$

По условию задачи n=2,5.

Получаем отношение масс в случае, если

1) $T_1 > T_2$:

$$\frac{C_1}{C_2} = \frac{1,5m_2}{m_1};\tag{10}$$


2)
$$T_2 > T_1$$

$$\frac{C_1}{C_2} = \frac{m_2}{1,5m_1}. (11)$$

	Критерий	Количество
		баллов
1	Записано уравнение теплового баланса	2
2	Выражена конечная температура смеси Т ₃	2
3	Указано, что возможны два случая	2
4	Получено уравнение (5) или уравнение (10)	12
5	Получено уравнение (5) или уравнение (10)	12
	Итого	30

2. Пассажир авиарейса «Красноярск-Пхукет» знает, что самолёт летит на высоте 10 км с собственной скоростью $v_1 = 930$ км/час. Ветер на этих высотах дует приблизительно с одинаковой скорость $v_2 = 100 \frac{\text{км}}{\text{час}}$ как в прямом направлении, так и в обратном направлении. Ветер дует параллельно курсу. Наблюдая в иллюминатор, пассажир увидел, что время пролета одного и того же городка отличается на $\Delta t = 12$ с. Определите линейные размеры городка. Пассажир видит город под углом 30° . (10 баллов)

Решение:

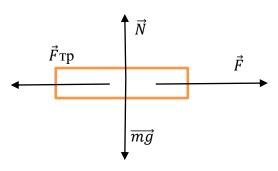
Время пролёта самолёта не зависит от угла, под которым его видит пассажир, и можно считать, что вращение Земли не существенно, так самолёт летит с севера на юг и обратно, поэтому длина города будет равна:

$$l = (v_1 + v_2)t_1$$
- самолёт летит по ветру; (12)

$$l = (v_1 + v_2)t_1 = (v_1 - v_2)(t_1 + \Delta t)$$
 – самолёт летит против ветра. (13)

Найдём время t_1 :

$$t_1 = \frac{v_1 - v_2}{2v_2} \Delta t \tag{14}$$


Определим длину города

$$l = \frac{v_1^2 - v_2^2}{2v_2} \Delta t = 14248 \text{ M} = 14,2 \text{ KM}. \tag{15}$$

	Критерии	Баллы
1	Указано, что не важно под каким углом пассажир смотрит на	1
	появляющийся городок под крылом	
2	Записаны формулы для расчета длины городка как в прямом, так и в	4
	обратном направлении (по 2 балла за формулу)	
3	Выведена формула для расчета времени t_1 или t_2	2
4	Записана формула для расчета длины городка	2
5	Получено численное значение длины	1
	Итого	10

3. Любишь кататься — люби и саночки возить! Мальчик Вася решил экспериментально выяснить, какую массу m снега и на какое расстояние он сможет вывести в снежную погоду на детских санках, линейные размеры которых $S_0 = a \times b = 0.5 \times 1.0 \text{ м}^2$, где a — ширина, b — длина, масса санок $m_0 = 5 \text{ кг}$. Помогите ему ещё рассчитать и работу, которую он при этом совершает. Коэффициент трения полозьев санок о поверхность снега f = 0.05, масса снега, падающего в единицу времени на единицу площади $\mu = 2.5 \frac{\text{кг}}{\text{м}^2 \cdot \text{c}}$, ускорение свободного падения $g = 9.8 \text{ м/c}^2$. Василий может к санкам прикладывать силу тяги F = 200 H. Средняя скорость Василия по всему пути составляет v = 3 м / c. (20 баллов)

Решение:

Рассмотри момент времени остановки санок. Запишем второй закон Ньютона в векторной форме.

$$\vec{N} + \vec{F} + \vec{mg} + \vec{F}_{rp} = 0 \tag{16}$$

В момент времени t остановки санок их масса со снегом будет равна:

$$m = m_0 + m = m_0 + \mu S_0 t \tag{17}$$

Сделаем проекцию уравнение (14) по осям:

$$F - F_{\mathrm{T}p} = 0$$

$$N - mg = 0 \tag{18}$$

Сила трения равна:

$$F_{\rm rp} = \mu \, \text{N} \tag{20}$$

Силу трения мы получим из уравнений (18), (19) и (20):

$$F = F_{\rm rp} = f(m_0 + m)g$$
 (21)

Рассчитаем из уравнения (21) массу, которую мальчик может сдвинуть:

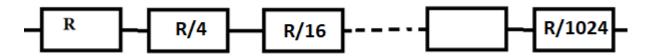
$$m = \frac{F}{fg} - m_0 = 403, 2 \text{ кг} \tag{22}$$

Определим время, которое двигались санки:

$$t = \frac{m}{\mu S_0} = 322,56 \text{ c} \tag{23}$$

Расстояние, которое прошли санки до остановки.

$$l = v \cdot t = 967,68 \text{ m.}$$
 (24)


Рассчитаем работу, совершенную Василием:

$$A = F \cdot l = 193536$$
 Дж. (25)

	Критерий	Количество баллов
1	Сделан рисунок с силами	3
2	Записан второй закон Ньютона в векторной форме:	1
3	Сделаны проекции сил по осям:	
	1) По оси х	2
	2) По оси у	2
4	Записана связь силы трения с силой нормальной	1
	реакции	
5	Записана формула масса санок со снегом	3
6	Выведена формула для определения массы снега	4
7	Подсчитана масса максимального снега	1
8	Записана формула для определения расстояния,	1
	которое проехали санки до остановки	

9	Получен результат для расстояния	1
10	Записана формула для работы	1
11	Поучен результат для работы	1
	Итого	20

4. Последовательно соединены сопротивления, каждое последующее в четыре раза меньше предыдущего. Во сколько раз изменится потребляемая мощность цепью, если к ней параллельно присоединить ещё одно сопротивление R₁=80 Ом. Примите R=30 Ом. (20 баллов)

Решение:

Рассмотрим последовательное соединение. Полное сопротивление цепи R_{06} рассчитаем по формуле

$$R_{06} = R\left(1 + \frac{1}{4} + \frac{1}{16} + \dots + \frac{1}{1024}\right). \tag{26}$$

Таким образом, чтобы найти сопротивление этой цепи надо найти сумму ряда, в котором

$$q = \frac{1}{4}$$
 — знаменатель прогрессии; (27)

$$b_1 = 1$$
 —первый член прогрессии; (28)

$$b_1 = 1$$
 — первый член прогрессии; (28)
$$b_n = (q)^{n-1} = \frac{1}{1024}$$
 — последний член прогрессии. (29)

Определим из уравнения (38) количество членов:

$$4^{n-1} = (2 \cdot 2)^{n-1} = 1024, (30)$$

Определить n не составляет особого труда, если помнить что $2^{10} = 1024$, поэтому n-1=5, следовательно количество членов прогрессии равно n=6. Найдем полное:

$$R_{06} = R \frac{b_1(q^n - 1)}{q - 1} \approx 80 \text{ Om.} =$$
(31)

Присоединим к последовательной цепи параллельно сопротивление R₁. Общее сопротивление цепи будет составлять:

$$R_2 = \frac{R_1 \cdot R_0 \delta}{R_1 + R_0 \delta} = 40 \text{ Om.}$$
 (32)

Мощность, потребляемая только последовательной цепочкой сопротивлений:

$$P_1 = \frac{U^2}{R_{06}} \tag{33}$$

Мощность, потребляемая цепью с параллельно включенным R:

$$P_2 = \frac{U^2}{R_2} \tag{34}$$

Отношение мощностей:

$$\frac{P_1}{P_2} = \frac{R_2}{R_{06}} = 0.5 \tag{35}$$


	Критерий	Количество
		баллов
1	Записана формула для расчета последовательной цепи в общем виде	2
2	Указано, что сопротивление такой цепочки считается как сумма	3
	геометрической прогрессии	

3	Записана формула для расчета сопротивления с помощью суммы ряда	6
4	Получено численное значение сопротивления цепочки	1
5	Записана формула для расчета сопротивления при параллельном подключении	2
6	Получено численное значение сопротивления параллельном соединении	1
7	Записаны формулы для расчета потребляемой мощности	2
	По баллу за формулы	
8	Получена формула для расчета отношений мощностей	2
9	Получено численное значение отношения мощностей	1
	Итого	20

5. Высокоскоростные самолёты летают на высоте от 7 км до 13 км. Пользуясь графиком зависимости плотности атмосферы над уровнем моря, определите с какой скоростью v_1 должен лететь самолёт на высоте 10 км, чтобы его потребляемая мощность равнялась мощности, развиваемой им на высоте 13 км. На высоте 13 км самолёт летит со скоростью $v_2 = 900$ км/час.

Считайте, что:

- 1) самолёт движется равномерно прямолинейно с постоянной скоростью одинаковой на обеих высотах;
- 2) сила сопротивления со стороны воздуха прямо пропорциональна плотности, скорости и площади лобового сечения самолёта, т.е. $F = \alpha \rho sv$, где α зависит от конструкции самолета. (20 баллов)

Решение:

Так как самолёт летит равномерно, то сила тяги самолёта уравновешивает силу сопротивления, действующую на самолёт со стороны воздуха.

$$F = F_c = \alpha \rho v S \tag{36}$$

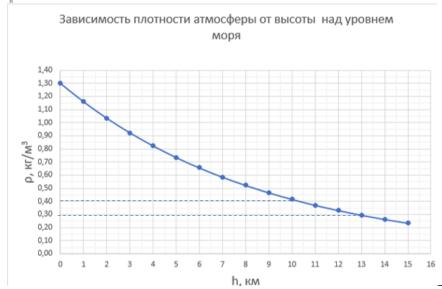
Мощность находится по формуле

$$P = Fv = \alpha \rho v^2 s \tag{37}$$

Мощности самолёта на разных высотах равны соответственно:

$$P_1 = \alpha \rho_1 v_1^2 S \tag{38}$$

$$P_2 = \alpha \rho_2 v_2^2 S \tag{39}$$


По условию задачи
$$P_1 = P_2$$
, (40)

Из уравнений (37), (38), (39), (40) выразим скорость:

$$v_{1=}\sqrt{\frac{\rho_2}{\rho_1}}v_2, (41)$$

где ρ_2 =0,3 кг/м³ плотность воздуха на высоте 13 км, ρ_1 = 0,4 кг/м³ плотность воздуха на высоте 10 км.

Плотности определяем по графику зависимости плотности атмосферы от высоты.

Подставим значения плотностей в формулу (41) и получим значение скорости на высоте 10 км:

$$v_{1=}\sqrt{\frac{0.3}{0.4}}900 = 779,4 \text{ km/qac}$$
 (42)

Критерий	Количество баллов
Записана формула для мощности	2
Указано, что сила сопротивления равна силе	4
ТЯГИ	
Получена формула для расчета мощности с	4
учетом силы сопротивления	
Записаны формулы для расчета мощностей	2
на различных высотах, по одному баллу за	
формулу	
Выведена формула для скорости на высоте	4
h_1	
По графику определены значения	2
плотностей, по одному баллу за каждое	
значение	
Получено численное значение скорости на	2
высоте	
Итого	20
	Записана формула для мощности Указано, что сила сопротивления равна силе тяги Получена формула для расчета мощности с учетом силы сопротивления Записаны формулы для расчета мощностей на различных высотах, по одному баллу за формулу Выведена формула для скорости на высоте h По графику определены значения плотностей, по одному баллу за каждое значение Получено численное значение скорости на высоте

9 класс Вариант 3

1. Простой теплообмен. Теплоизолированный сосуд разделен теплоизолирующей перегородкой. В одной части сосуда находится жидкость с удельной теплоёмкостью C_L в другой части сосуда тоже жидкость с удельной теплоёмкостью C_2 . После того как убрали перегородку, в сосуде установилась температура такая, что разность между максимальной температурой и установившейся в сосуде оказывается в n раз меньше разности начальных температур жидкостей. При каком п отношение теплоёмкостей будет соответствовать уравнению:

(30 баллов)

$$\frac{\mathbf{m}_1}{\mathbf{m}_2} = \frac{\mathbf{C}_2}{\mathbf{C}_1}$$

Решение:

Запишем уравнение теплового баланса:

$$C_1 m_1 (T_3 - T_1) + C_2 m_2 (T_3 - T_2) = 0$$
 (1)

Выразим температуру Т₃

$$T_3 = \frac{C_1 m_1 T_1 + C_2 m_2 T_2}{C_1 m_1 + C_2 m_2}. (2)$$

В задаче не сказано температура какого тела выше, поэтому будем решать задачу для двух случае в общем виде. Установившаяся температура всегда меньше максимальной. Примем отношение разности начальных температур к разности между максимальной и полученной за величину п:

Первый случай. Пусть $T_1 > T_2$, тогда разность температур, составляет:

$$n(T_1 - T_3) = T_1 - T_2 (3)$$

Подставим уравнение (2) в (3) ;
$$n\left(T_1 - \frac{C_1 m_1 T_1 + C_2 m_2 T_2}{C_1 m_1 + C_2 m_2}\right) = T_1 - T_2. \tag{4}$$

Выразим отношение масс:

$$\frac{m_1}{m_2} = \frac{(n-1)C_2(T_2 - T_1)}{T_2C_1 - T_1C_1} = \frac{(n-1)C_2}{C_1}$$
 (5)

Рассмотрим второй случай. Пусть

Пусть $T_2 > T_1$, тогда разность температур, составляет:

$$n(T_2 - T_3) = T_2 - T_1 \tag{6}$$

Подставим уравнение (2) в (3);

$$n\left(T_2 - \frac{C_1 m_1 T_1 + C_2 m_2 T_2}{C_1 m_1 + C_2 m_2}\right) = T_2 - T_1. \tag{7}$$

Выразим отношение масс:

$$\frac{m_1}{m_2} = \frac{T_2 - T_1}{(n-1)(T_2 - T_1)} \frac{C_2}{C_1} = \frac{1}{(n-1)} \frac{C_2}{C_1}$$
(8)

Получаем отношение масс в случае, если

1) $T_1 > T_2$:

$$\frac{m_1}{m_2} = \frac{C_2}{C_1};$$
 (9)

2)
$$T_2 > T_1$$

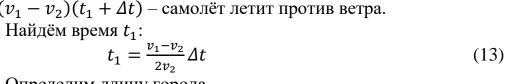
$$\frac{m_1}{m_2} = \frac{C_2}{C_1}. (10)$$

Таким образом, при n=2, не зависимо от того температура какого тела больше, отношение масс равно:

$$\frac{m_1}{m_2} = \frac{C_2}{C_1} \tag{11}$$

	Критерий	Количество баллов
1	Записано уравнение теплового баланса	2
2	Выражена конечная температура смеси Т ₃	2
3	Указано, что возможны два случая	2
4	Получено уравнение (5) или уравнение (10)	11
5	Получено уравнение (5) или уравнение (10)	11
	Сделан вывод, что n=2	2
	Итого:	30

Задача 2 (10 баллов) Пассажир авиарейса «Красноярск-Пхутет» знает, что самолёт летит на высоте 10 км с собственной скоростью $v_1=930$ км/час. Ветер на этих высотах с дует приблизительно с одинаковой скорость $v_2=200\frac{\rm км}{\rm час}$ как в прямом направлении, так и в обратном направлении. Ветер дует параллельно курсу. Наблюдая в иллюминатор, пассажир увидел, что время пролета одного и того же городка отличается на $\Delta t = 18$ с. с. Определите линейные размеры городка. Пассажир видит город под углом 30°.

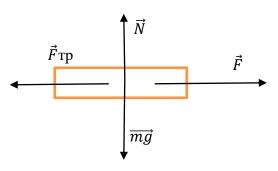

Решение:

Время пролёта самолёта не зависит от угла, под которым его видит пассажир и можно считать, что вращение Земли не существенно, так самолёт летит с севера на юг и обратно, поэтому длина города будет равна:

$$l = (v_1 + v_2)t_1$$
- самолёт летит по ветру; (12)

$$l = (v_1 + v_2)t_1 = (v_1 - v_2)(t_1 + \Delta t)$$
 – самолёт летит против ветра.

Определим длину города


$$l = \frac{v_1^2 - v_2^2}{2v_2} \Delta t = 10,3 \text{ km}. \tag{14}$$

	Критерии	Баллы
1	Указано, что не важно под каким углом пассажир	1
	смотрит на появляющийся городок под крылом	
2	Записаны формулы для расчета длины городка как в	4
	прямом, так и в обратном направлении (по 2 балла за	
	формулу)	
3	Выведена формула для расчета времени t_1 или t_2	2
4	Записана формула для расчета длины городка	2
5	Получено численное значение длины	1
	Итого	10

3. Любишь кататься — люби и саночки возить! Мальчик Вася, решил экспериментально выяснить какую массу m снега и на какое расстояние он сможет вывести в снежную погоду на детских санках, линейные размеры которых $S_0 = a \times b = 0.4 \times 1.0 \text{ м}^2$, где a — ширина, b — длина, масса санок $m_0 = 5.5 \text{ кг}$. Помогите ему ещё рассчитать и работу, которую он при этом совершает. Коэффициент трения полозьев санок о поверхность снега f = 0.05, масса снега падающего в единицу времени на единицу площади $\mu = 4 \frac{\text{кг}}{\text{м}^2 \cdot \text{c}}$, ускорение свободного падения $g = 9.8 \text{ м/c}^2$. Василий может к санкам прикладывать силу тяги F = 200 H. Средняя скорость Василия по всему пути составляет v = 2.5 м / c. (20 баллов)

Решение:

Рассмотри момент времени остановки санок. Запишем второй закон Ньютона в векторной форме.

$$\vec{N} + \vec{F} + \overrightarrow{mg} + \vec{F}_{TD} = 0 \tag{15}$$

В момент времени t остановки санок их масса со снегом будет равна:

$$m = m_0 + m = m_0 + \mu S_0 t \tag{16}$$

Сделаем проекцию уравнения (26) по осям:

$$F - F_{\mathrm{T}p} = 0 \tag{17}$$

$$N - mg = 0 (18)$$

Сила трения равна:

$$F_{\rm TD} = \mu \, \text{N} \tag{19}$$

Силу трения мы получим из уравнений (17), (18) и (19):

$$F = F_{\rm Tp} = f(m_0 + m)g$$
 (20)

Рассчитаем из уравнения (27) массу, которую мальчик может сдвинуть:

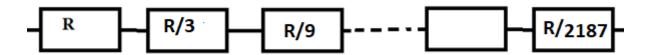
$$m = \frac{F}{fg} - m_0 = 394,5 \text{ кг}$$
 (21)

Определим время, которое двигались санки:

$$t = \frac{m}{\mu S_0} = 396,6 \text{ c} \tag{22}$$

Расстояние, которое прошли санки до остановки.

$$l = v \cdot t = 991,5 \text{ m}.$$
 (23)


Рассчитаем работу, совершенную Василием:

$$A = F \cdot l = 198,3$$
 к Дж.
$$\tag{24}$$

Критерий	Количество
	баллов
Сделан рисунок с силами	3
Записан второй закон Ньютона в векторной форме:	1
Сделаны проекции сил по осям:	
1) По оси х	2
2) По оси у	2
Записана связь силы трения с силой нормальной реакции	1
Записана формула масса санок со снегом	3
Выведена формула для определения массы снега	3
Подсчитана масса максимального снега	1
Записана формула для определения расстояния, которое проехали санки до	
остановки	

Получен результат для расстояния	1
Записана формула для работы	1
Поучен результат для работы	1
Итого	20

4. Последовательно сопротивления, соединены каждое последующее в три раза меньше предыдущего. Во сколько раз изменится потребляемая мощность цепью, если к ней параллельно присоединить ещё одно сопротивление R_1 =90 Ом. Примите R=60 Ом. (20 баллов)

Решение:

Рассмотрим последовательное соединение. Полное сопротивление цепи R_{06} рассчитаем по формуле

$$R_{06} = R\left(1 + \frac{1}{3} + \frac{1}{9} + \dots + \frac{1}{2187}\right). \tag{25}$$

Таким образом, чтобы найти сопротивление этой цепи надо найти сумму ряда, в котором

$$q = \frac{1}{3}$$
 — знаменатель прогрессии; (26)

$$b_1 = 1$$
 —первый член прогрессии; (27)

$$b_1 = 1$$
 —первый член прогрессии; (27) $b_n = (q)^{n-1} = \frac{1}{2187}$ — последний член прогрессии. (28)

Определим из уравнения (38) количество членов:

$$3^{n-1} = 2048, (29)$$

n-1=7, следовательно количество членов прогрессии равно n=8. Найдем полное:

$$R_{06} = R \frac{b_1(q^n - 1)}{q - 1} \approx 90 \text{ Om.}$$
 (30)

Присоединим к последовательной цепи параллельно сопротивление R. Общее сопротивление цепи будет составлять

$$R_2 = \frac{R_1 \cdot R_0 \delta}{R_1 + R_0 \delta} = 45 \text{ Om.} \tag{31}$$

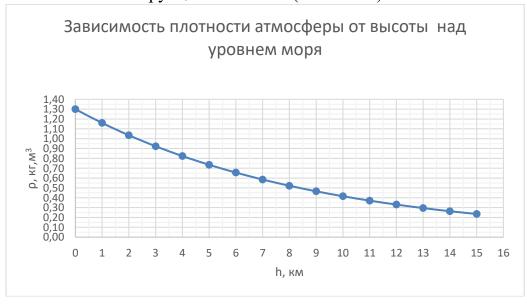
Мощность, потребляемая только последовательной цепочкой сопротивлений:

$$P_1 = \frac{U^2}{R_{06}} \tag{32}$$

Мощность, потребляемая цепью с параллельно включенным R:

$$P_2 = \frac{U^2}{R_2}$$
 (33)

Отношение мощностей:


$$\frac{P_1}{P_2} = \frac{R_2}{R_{00}} = 0.5 \tag{34}$$

	Критерий	Количество
		баллов
1	Записана формула для расчета последовательной цепи в общем	2
	виде	
2	Указано, что сопротивление такой цепочки считается как сумма	3
	геометрической прогрессии	
3	Записана формула для расчета сопротивления с помощью суммы	6
	ряда	
4	Получено численное значение сопротивления цепочки	1
5	Записана формула для расчета сопротивления при параллельном	2
	подключении	
6	Получено численное значение сопротивления параллельном	1
	соединении	
7	Записаны формулы для расчета потребляемой мощности	2
	По баллу за формулы	
8	Получена формула для расчета отношений мощностей	2
9	Получено численное значение отношения мощностей	1
	Итого	20

5. Высокоскоростные самолёты летают на высоте от 7 км до 13 км. Пользуясь графиком зависимости плотности атмосферы над уровнем моря, определите с какой скоростью v_2 должен лететь самолёт на высоте 13 км, чтобы его потребляемая мощность была в 1,2 раза меньше мощности, развиваемой им на высоте 7 км. На высоте 13 км самолёт летит со скоростью $v_2 = 700$ км/час.

Считайте, что:

- 1) самолёт движется равномерно прямолинейно с постоянной скоростью одинаковой на обеих высотах.
- 2) сила сопротивления со стороны воздуха прямо пропорциональна плотности, скорости и площади лобового сечения самолёта, т.е. $F = \alpha \rho sv$, где α зависит от конструкции самолета. (20 баллов)

Решение:

Так как самолёт летит равномерно, то сила тяги самолёта уравновешивает силу сопротивления, действующую на самолёт со стороны воздуха.

$$F = F_c = \alpha \rho v S \tag{35}$$

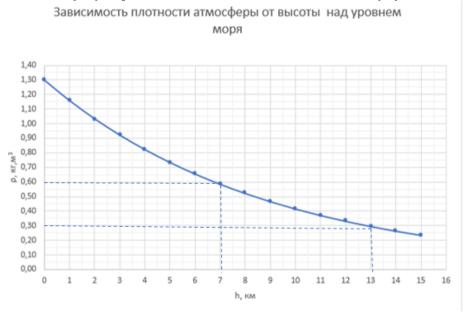
Мощность находится по формуле

$$P = Fv = \alpha \rho v^2 s \tag{36}$$

Мощности самолёта на разных высотах равны соответственно:

$$P_1 = \alpha \rho_1 v_1^2 S \tag{37}$$

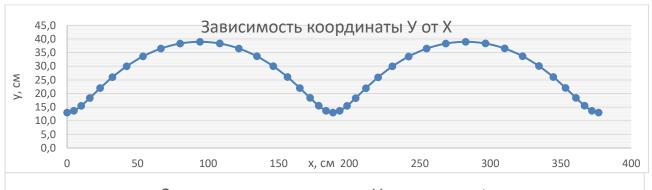
$$P_2 = \alpha \rho_2 v_2^2 S \tag{38}$$

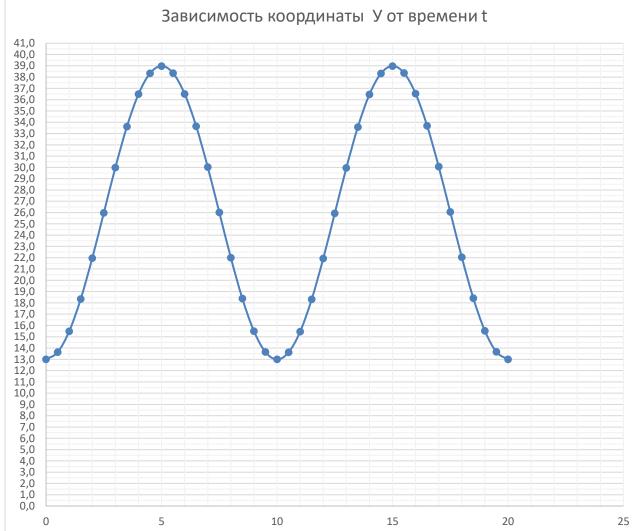

По условию задачи
$$P_1 = 1.2 P_2$$
, (39)

Из уравнений (16), (17) и (18) выразим скорость:

$$v_{2=}\sqrt{\frac{P_2}{P_1}\frac{\rho_1}{\rho_2}}v_1 = \tag{40}$$

где ρ_1 =0,3 кг/м³ плотность воздуха на высоте 13 км, ρ_1 = 0,6 кг/м³ плотность воздуха на высоте 7 км.


Плотности определяем по графику зависимости плотности атмосферы от высоты.



Подставим значения плотностей формулу (40) и отношение мощностей и получим значение скорости на высоте 13 км:

 $v_2 = 906 \text{ км/час}$ (41)Критерий Количество баллов Записана формула для мощности 2 Указано, что сила сопротивления равна силе тяги 4 Получена формула для расчета мощности с учетом силы сопротивления 4 Записаны формулы для расчета мощностей на различных высотах, 2 по одному баллу за формулу 5 Выведена формула для скорости на высоте h_1 4 По графику определены значения плотностей, по одному баллу за 2 6 каждое значение 7 Получено численное значение скорости на высоте 2 Итого 20

Графики к задаче 2.

