Отборочный тур олимпиады «Росатом», 2022-2023 учебный год, физика. 8 класс

- **1.** Дно сосуда с вертикальными стенками и площадью дна S = 200 см 2 покрыто слоем пористого материала (типа поролона) толщиной H = 10 см. В сосуд наливают V = 1 л воды, и нижняя часть материала толщиной h = 6 см оказывается в воде. В сосуд наливают еще такой же объем воды. Найти высоту уровня воды над материалом. При заполнении пор водой материал не растягивается, воздух из пор выходит полностью, в воде материал не всплывает.
- **2.** По длинному мосту равномерно едет поезд. Известно, что поезд находился на мосту в течение времени $t_1 = 120$ сек, а мимо обходчика, стоящего около начала моста, поезд проезжал в течение времени $t_2 = t_1/3$ сек. Какое время ехал по мосту человек, сидящий в купе шестого вагона? Во сколько раз длина моста больше длины поезда?
- 3. Груз, подвешенный к потолку с помощью пружины, тянут вниз некоторой силой F. Затем тот же груз с той же пружиной привязывают к полу и тянут вверх той же силой F (см. рисунок). Известно, что в обоих случаях пружина оказывается растянутой, и ее удлинения в этих случаях отличаются в два раза. Найти отношение силы тяжести груза к силе F. При любых удлинениях пружины справедлив закон Гука: удлинение пружины пропорционально приложенной к ней силе.
- **4.** Аквариум в форме куба с ребром *а* заполнен водой до половины. Найти максимальный размер ребра кубической льдины, которую можно поместить в аквариум без перелива воды через край и без касания льдиной дна сосуда. Плотность льда составляет 0,9 от плотности воды.
- 5. Однородный стержень массой M уравновешен на точечной опоре (верхний рисунок). На одной из половин стержня делают пять изгибов, делящих ее на шесть одинаковых участков, расположенных под прямыми углами друг к другу (нижний рисунок). Груз какой массы m нужно прикрепить к концу стержня (нижний рисунок), чтобы равновесие стержня не нарушилось?

1. Из условия заключаем, что объем пор в материале объемом

$$V_1 = hS = 1, 2$$
 л

равен величине V = 1 л. Следовательно, объемная доля пор в материале составляет

$$\eta = \frac{V}{V_1} = \frac{V}{hS} = 0,833$$

Поэтому объем пор V_2 в оставшемся сухим материале составляет

$$V_2 = \eta (H - h) S = \frac{V (H - h)}{h}$$

Поскольку этот объем меньше объема V, при наливании в сосуд еще воды с таким же объемом V этот объем будет заполнен, и останется вода объемом

$$\Delta V = V - V_2 = V - \frac{V(H - h)}{h} = \frac{V(2h - H)}{h}$$

Эта вода расположится выше материала, причем уровень воды над поверхностью материала составит

$$\Delta h = \frac{\Delta V}{S} = \frac{V(2h - H)}{hS} = 1,7 \text{ cm}$$

Критерии оценки решения задачи (максимальная оценка за решение – 2 балла)

- 1. Правильная идея решения из данных условия найти, какую долю объема материала занимают поры 0,5 балла
- 2. Правильно определен объем пор 0,5 балла
- 3. Правильные уравнения для объема занятого водой во втором случае 0,5 балла
- 4. Правильный ответ 0,5 балла

Оценка за решение задачи равна сумме оценок за перечисленные пункты.

2. Очевидно, искомое время находится как

$$t = \frac{L}{v}$$

где L - длина моста, v - скорость поезда. Найдем ее из приведенных данных. «Поезд находился на мосту» означает, что какая-то его точка находится на мосту. Поэтому это время начинается, когда на мост въезжает локомотив, заканчивается, когда с моста съезжает последний вагон. Поэтому

$$t_1 = \frac{L+l}{v} = \frac{L}{v} + \frac{l}{v} \tag{1}$$

«Поезд проезжает мимо обходчика» означает, что какая-то его точка находится напротив обходчика. Поэтому

$$t_2 = \frac{l}{v} \tag{2}$$

Вычитая формулу (2) из (1), найдем время нахождения на мосту любого пассажира

$$t = t_1 - t_2 = \frac{2}{3}t_1 = 80$$
 c

Деля теперь (1) на (2) найдем отношение длины моста к длине поезда

$$\frac{L}{l} = \frac{t_1}{t_2} - 1 = 2$$

т.е. длина моста в 2 раза больше длины поезда

Критерии оценки решения задачи (максимальная оценка за решение – 2 балла)

- 1. Правильное использование формулы «расстояние-время-скорость» 0,5 балла
- 2. Правильная система уравнений для длины моста и длины поезда 0,5 балла
- 3. Правильно найдено время нахождения на мосту пассажира (и формула и число) 0,5 балла
- 4. Правильно найдено отношение длины моста к длине поезда 0,5 балла

Оценка за решение задачи равна сумме оценок за перечисленные пункты.

3. Поскольку в первом случае пружину растягивает сумма силы тяжести груза и внешней силы F, а во втором случае их разность, пружина растянута сильнее в первом случае. А поскольку пружина растянута и в первом и во втором случае, внешняя сила больше силы тяжести груза. Поэтому закон Гука для пружины в первом и втором случаях дает

$$k2\Delta x = F + F_m$$
$$k\Delta x = F - F_m$$

где $2\Delta x$ и Δx - удлинения пружины в первом и втором случаях, k - жесткость пружины, F_m - сила тяжести груза. Отсюда находим

$$2(F - F_m) = F + F_m$$

Вынося за скобку в правой и левой частях силу F, получим

$$2\left(1 - \frac{F_m}{F}\right) = 1 + \frac{F_m}{F}$$

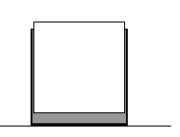
Отсюда окончательно находим

$$\frac{F_m}{F} = \frac{1}{3}$$

Критерии оценки решения задачи (максимальная оценка за решение – 2 балла)

- 1. Правильное использование закона Гука 0,5 балла
- 2. Правильные условия равновесия в первом и во втором случаях 0,5 балла
- 3. Правильная система уравнений 0,5 балла
- 4. Правильный ответ 0,5 балла

Оценка за решение задачи равна сумме оценок за перечисленные пункты.


4. Из закона Архимеда следует, что при плавании льдины в воду погружено девять десятых ее объема. Действительно, условие плавания льдины дает

$$mg = \rho_0 g V_{n.y.}$$

где m - масса льдины, g - ускорение свободного падения, ρ_0 - плотность воды, $V_{n,u}$ - объем погруженной в воду части льдины. Поскольку $m = \rho V$ (ρ - плотность льда), из условия плавания заключаем, что доля погруженной воду части льдины $V_{n,u}/V$ составляет девять десятых ее объема

$$\frac{V_{n.u.}}{V} = \frac{\rho}{\rho_0} = 0.9$$

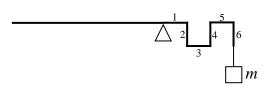
А это означает, что «опасным» будет выливание воды через край сосуда, а не касание льдиной дна сосуда. Действительно, при увеличении объема льдины с одной стороны, поднимается уровень воды в сосуде, с другой, нижние точки плавающей льдины приближаются ко дну сосуда. Но поскольку сосуд и льдина

кубические, то если льдина займет всю площадь сосуда (см. первый рисунок в решении), дна доставать она не будет, так как в воду погружается девять десятых ее объема.

Итак, «критический» размер ребра льдины b отвечает ситуации, когда уровень воды в сосуде достиг края сосуда. Это значит, что объем воды в сосуде плюс объем погруженной в воду части льдины должны равняться объему сосуда. Учитывая, что объем воды в сосуде равен половине объема сосуда и что в воду погружены девять десятых объема льдины, условие критичности ситуации дает

$$\frac{1}{2}a^3 + \frac{9}{10}b^3 = a^3$$

Отсюда находим


$$b = \sqrt[3]{\frac{5}{9}}a$$

Критерии оценки решения задачи (максимальная оценка за решение – 2 балла)

- 1. Правильная идея решения размер льдины является максимальным, когда уровень воды доходит до верха сосуда 0,5 балла
- 2. Правильное условие плавания льдины 0,5 балла
- 3. Правильное нахождение объема воды с объемом погруженной в воду части льдины 0,5 балла
- 4. Правильный ответ 0,5 балла

Оценка за решение задачи равна сумме оценок за перечисленные пункты.

5. Чтобы рычаг находился в равновесии моменты сил, действующие на правую и левую от опоры части рычага (см. рисунок) должны равняться друг другу. На левую часть рычага действует такой момент сил

$$N_{nee} = \frac{1}{8} Mgl$$

где M - масса всего стержня, l - его длина (коэффициент 1/8 получается так: масса левой половины рычага M/2, плечо – половина от длины левой половины рычага, т.е. l/4).

Найдем момент силы тяжести, действующий на правую часть рычага. Так как правую часть согнули пять раз, она состоит из шести частей с массой M/12 каждая. Длина каждой части - l/12. Плечи каждой части l_i легко найти из рисунка:

$$l_1$$
 - половина длины одной части
$$l_1 = \frac{1}{2} \cdot \frac{1}{12} l = \frac{1}{24} l$$

l_2 - длина одной части	$l_2 = \frac{1}{12}l$
$l_{\scriptscriptstyle 3}$ - три вторых длины одной части	$l_1 = \frac{3}{2} \cdot \frac{1}{12} l = \frac{1}{8} l$
$l_{\scriptscriptstyle 4}$ - две длины одной части	$l_4 = 2\frac{1}{12}l = \frac{1}{6}l$
$l_{\scriptscriptstyle 5}$ - пять вторых длин одной части	$l_5 = \frac{5}{2} \cdot \frac{1}{12} l = \frac{5}{24} l$
$l_{\scriptscriptstyle 6}$ - три длины одной части	$l_6 = 3\frac{1}{12}l = \frac{1}{4}l$
$l_{\scriptscriptstyle m}$ - три длины одной части	$l_m = 3\frac{1}{12}l = \frac{1}{4}l$

Отсюда находим момент сил тяжести, действующих на правую часть рычага

$$N_{npae} = \frac{7}{96}Mgl + \frac{1}{4}mgl$$

Приравнивая моменты $N_{{}_{neg}}$ и $N_{{}_{npag}}$, получим

$$m = \frac{5}{24}M$$

Критерии оценки решения задачи (максимальная оценка за решение – 2 балла)

- 1. Правильное условие равновесия рычага сумма моментов относительно опоры равна нулю -0.5 балла
- 2. Правильное нахождение центра тяжести рычага (или моментов, действующих на правое и левое плечо) 0.5 балла
- 3. Правильное условие равновесия рычага 0,5 балла
- 4. Правильный ответ 0,5 балла

Оценка за решение задачи равна сумме оценок за перечисленные пункты.

Оценка работы

Оценка работы складывается из оценки задач. Максимальная оценка — 10 баллов. Допустимыми являются все целые или «полуцелые» оценки от 0 до 10.

Отборочный тур олимпиады «Росатом» в регионах, 2022-2023 учебный год, физика, 8 класс

1 вариант

- **1.** Высота гранитной колонны «Александрийский столп» в Санкт-Петербурге $h = 25,6\,$ м. Каково давление колонны на постамент? Плотность гранита $2600\,$ кг/м³. $g = 10\,$ м/с². Считать, что колонна цилиндрическая.
- 2. Два автомобиля едут в противоположные стороны со скоростями v и 2v. К одному автомобилю привязан трос, который переброшен через блок, привязанный ко второму автомобилю. Второй конец троса привязан к тележке (см. рисунок). Найти ее скорость.
- 3. Какую максимальную массу льда с температурой 0° С можно бросить в воду массой m=1,5 кг с начальной температурой $t=30^{\circ}$ С, чтобы весь лед растаял? Удельная теплоемкость воды $c=4,2\cdot10^{3}$ Дж/(кг град), удельная теплота плавления льда $\lambda=3,35\cdot10^{5}$ Дж/кг.
- **4.** Конец однородного стержня длиной l согнули под прямым углом так, что длина согнутого участка составляет четвертую часть длины стержня. На каком расстоянии x от согнутого конца нужно расположить точечную опору, чтобы стержень находился в равновесии?
- **5.** Между двумя городами A и B, расстояние между которыми S, ездят две машины. Они одновременно начали двигаться из точки, лежащей на расстоянии 2S/5 от города A одна в направлении A, вторая B. Доехав до этих городов, машины разворачиваются и едут навстречу друг другу. Известно, что машины встретились на расстоянии S/5 от города B. Встретившись, машины разворачиваются и едут в направлении «своих» городов. Доехав до них, машины снова разворачиваются и едут навстречу друг другу. Снова встречаются, разворачиваются и так далее. На каком расстоянии от города A произойдет 2023 встреча машин? Какое расстояние пройдет от старта до 2023 встречи та машина, которая разворачиваются в городе A? Считать, что машины движутся с постоянными скоростями, а разворачиваются мгновенно.

1. Пусть площадь основания колонны равна S. Тогда масса колонны определяется через связь массы, плотности и объема

$$m = \rho hS$$

где ρ - плотность гранита, h - высота колонны. Следовательно, на колонну действует сила тяжести

$$mg = \rho ghS$$

и сила со стороны постамента F, которая уравновешивает силу тяжести. Колонна действует на постамент с такой же силой, а давление на постамент определяется соотношением

$$P = \frac{F}{S} = \rho g h = 6,656 \cdot 10^5 \text{ Ha}.$$

Критерии оценки решения задачи (максимальная оценка за решение – 2 балла)

- 1. правильное использование определения плотности 0,5 балла
- 2. получена правильная формула для силы реакции 0,5 балла
- 3. правильное определение давления 0,5 балла
- 4. правильный ответ (формула и число) 0,5 балла

Оценка за решение задачи равна сумме оценок за перечисленные пункты.

2. Пусть в некоторый момент времени машины и тележка занимают некоторые положения, и пусть после этого момента проходит некоторый интервал времени Δt . Найдем насколько переместится за это время тележка. Поскольку правая машина переместится направо на расстояние $2v\Delta t$, а левая машина переместится налево на расстояние $v\Delta t$, то длина веревки между блоками стала больше на величину $3v\Delta t$. Значит, длина куска веревки от левого блока до тележки стала короче на эту величину. И, кроме того, та точка, откуда начинается этот кусок, передвинулся влево на $v\Delta t$. Поэтому тележка переместится налево на $4v\Delta t$. Следовательно, скорость тележки направлена налево и равна

$$v_m = 4v$$

Критерии оценки задачи

- 1. Правильная идея решения вычисление перемещения тележки по известным перемещениям машин 0,5 балла,
- 2. Правильно использована формула «расстояние-время-скорость» 0,5 балла,
- 3. Правильная связь перемещений машин и тележки 0,5 балла,
- 4. Правильный ответ 0,5 балла.

Оценка за задачу находится как сумма оценок перечисленных пунктов. Максимальная оценка за задачу – 2 балла.

3. Максимальному значению массы льда, который растает, будучи помещенным в воду, отвечает ситуация, когда после таяния в калориметре содержится вода (и получившаяся при таянии льда, и находившаяся в калориметре первоначально) с температурой, равной $t_0 = 0$ ° С. Поэтому все тепло, выделившееся при остывании воды, первоначально находившейся в калориметре до $t_0 = 0$ ° С, идет на плавление льда. Следовательно, уравнение теплового баланса для рассматриваемого процесса остывания-таяния дает

$$cm(t-t_0) = \lambda M$$

где М максимальная масса льда, который растает в калориметре. Отсюда находим

$$M = \frac{cm(t - t_0)}{\lambda} = 0,564 \text{ кг.}$$

Критерии оценки решения задачи (максимальная оценка за решение – 2 балла)

- 1. Правильная формула для количества теплоты, отданного водой 0,5 балла
- 2. правильная формула для количества теплоты, полученного льдом 0,5 балла
- 3. правильное уравнение теплового баланса 0,5 балла
- 4. правильный ответ 0,5 балла

Оценка за решение задачи равна сумме оценок за перечисленные пункты.

4. В равновесии моменты, действующие на правое и на левое плечо стержня, одинаковы. Массы согнутого участка стержня, куска стержня от согнутой части до опоры и от опоры до правого конца равны соответственно

$$\frac{m}{4}$$
, $\frac{mx}{l}$, $m-\frac{m}{4}-\frac{mx}{l}$,

где m - масса стержня. Поэтому момент силы тяжести, действующей на согнутый участок стержня, равен x(mg/4), на участок длиной x от согнутой части до опоры - (x/2)(mgx/l), на участок стержня от опоры до правого конца (l-(l/4)-x)mg(1-(l/4)-(x/l))/2,

Условие равновесия стержня дает

$$\frac{mx}{4} + \frac{mx^2}{2l} = \frac{m((3l/4) - x)^2}{2l}$$

Отсюда находим

$$x = \frac{9l}{32}$$

(решения через центр тяжести несогнутой части стержня или центр тяжести всего стержня приводят к тому же ответу).

Критерии оценки решения задачи (максимальная оценка за решение – 2 балла)

- 1. правильное условие равновесия рычага сумма моментов относительно оси равна нулю 0,5 балла
- 2. правильные плечи и силы для различных частей рычага 0,5 балла
- 3. правильное сравнение равновесия 0,5 балла
- 4. правильный ответ 0,5 балла

Оценка за решение задачи равна сумме оценок за перечисленные пункты.

5. Очевидно, сумма расстояний, пройденных машинами от одной встречи до другой, равна удвоенному расстоянию между городами. Поэтому от одной встречи до следующей каждая машина проходит одинаковое расстояние. А поскольку машины начали движение из точки, лежащей на расстоянии 2S/5 от города A, а встретились на расстоянии

S/5 от B, та машина, которая разворачивается в городе A прошла от старта до первой встречи со второй машиной расстояние 6S/5. Между первой и второй встречей эта машина пройдет такое же расстояние, поэтому вторая встреча машин произойдет в точке старта. Третья встреча — в той же точке, что и первая. Таким образом, все нечетные встречи машин будут происходить в точке, лежащей на расстоянии S/5 от города B (или 4S/5 от города A), а все четные — в точке старта. Поэтому 2022 встреча машин состоится в точке старта, 2023 — в той же точке, что и первая встреча — т.е. на расстоянии S/5 от города B и на расстоянии 4S/5 от города A.

Поскольку от старта до первой встречи та машина, которая разворачивается в городе A, прошла расстояние 2S/5+4S/5=6S/5, то такое же расстояние она пройдет от каждой встречи до следующей. Поэтому от старта до 2023 встречи эта машина пройдет расстояние

$$L = 2023 \frac{6S}{5} = \frac{12138S}{5}$$

Ответ. 2023 встреча машин произойдет на расстоянии 4S/5 от города А. Та машина, которая разворачивается в городе А, от старта до 2023 встречи пройдет расстояние

$$L = 2023 \frac{6S}{5} = \frac{12138S}{5} = 2427, 6S = 2427 \frac{3}{5}S$$

Критерии оценки решения задачи (максимальная оценка за решение – 2 балла)

- 1. Правильно использована формула «расстояние-время-скорость» 0,5 балла,
- 2. Правильное (и обоснованное) утверждение, что все четные встречи машин произойдут в одной точке и что все нечетные встречи машин произойдут в одной точке (другой по сравнению с четными встречами)
- 3. Правильное нахождение расстояния от В до точки 2023 встречи машин 0,5 балла,
- 4. Правильное расстояние, пройденное машиной, вышедшей из A до точки 2023 встречи машин 0,5 балла.

Оценка за задачу находится как сумма оценок перечисленных пунктов.

Оценка работы

Оценка работы складывается из оценки задач. Максимальная оценка — 10 баллов. Допустимыми являются все целые или «полуцелые» оценки от 0 до 10.

2 вариант (критерии оценки задач такие же как в варианте 1)

машин произойдет на расстоянии 6S/7 от города А. Та машина, которая разворачивается в городе А, от старта до 2023 встречи пройдет расстояние

$$L = 2023 \frac{9S}{7} = \frac{18207 \, S}{7} = 2601 \, S$$