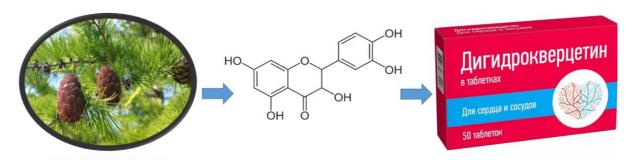
Материалы заданий заключительного этапа Всероссийской Сеченовской олимпиады школьников по химии 2023г. с ответами на задания, с указанием выставляемых баллов за каждое задание.

10 класс

ВАРИАНТ 1

ЗАДАНИЕ 1 (6 баллов)


1-1. Ученые кафедры химии Сеченовского университета активно участвуют в научных исследованиях, начатых в конце 20-го века под руководством доктора хим. наук, профессора, Заслуженного деятеля науки РФ Тюкавкиной Н.А., по разработке методов анализа и стандартизации лекарственных средств на основе дигидрокверцитина – флавоноидного соединения, обладающего высокой антиоксидантной активностью, выделенного из древесины лиственницы Larix lignum.

Профессор Тюкавкина Нонна Арсеньевна

Формула дигидрокверцитина приведена на схеме. Рассчитайте во сколько раз массовая доля атомарного кислорода в соединении меньше массовой доли атомарного углерода, а также объем углекислого газа (давление 101кПа, температура 30^{0} С), который выделится при сжигании 64 г дигидрокверцитина, содержащего помимо основного вещества 5% примесей, не содержащих углерод.

1 EHIETHIE	
Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	
Формула дигидрокверцитина $C_{15}H_{12}O_7$.	2
$M(C_{15}H_{12}O_7)=304 \ \Gamma \ \text{моль};$	
Рассчитаем массовые доли атомарных кислорода и водорода в	2
дигидрокверцитине:	
$\omega(O)=m(O)\backslash M(C_{15}H_{12}O_7)=36,8\%$	
$\omega(C)=m(C)\backslash M(C_{15}H_{12}O_7)=59,2\%$	
$\omega(C)$ \ $\omega(O)$ =1,61рного кислорода в 1,61 раза меньше массовой доли атомарного	
углерода.	

Уравнение реакции горения:	2
$2C_{15}H_{12}O_{29}O_2=30CO_2+12H_2O$	
$m(C_{15}H_{12}O_7$ чистого вещества)= $64\cdot0,95$ = $60,8$ г	
$n(C_{15}H_{21}O_7) = 60.8/304 = 0.2$ моль	
$n(CO_2) = 15n(C_{15}H_{21}O_7) = 3$ моль	
$V(CO_2) = 3.8,31.303/101 = 74,8 \pi$	
Максимальный балл	6

ЗАДАНИЕ 2 (6 баллов)

2-1. Железную окалину сплавили при 500^{0} С с избытком гидроксида натрия, при этом образовалась смесь двух солей. В первой соли массовая доля кислорода 24,49%, а массовая доля натрия 46,94%. Во второй соли на один атом железа приходится 5 атомов натрия, а суммарное число всех атомов равно $9,045\cdot10^{23}$. Напишите уравнение реакции. Определите массу взятой железной окалины.

РЕШЕНИЕ

1 EMEITIE	
Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	
Первая соль:	2
Na:Fe:O = $46,94/23$: $27,58/56$: $24,49/16 = 4$:1:3 => Na4FeO3 (Fe ⁺²)	
Вторая соль: т.к. Fe ⁺³ => Na5FeO4	
Уравнение реакции:	2
$Fe3O4 + 14NaOH \rightarrow Na4FeO3 + 2Na5FeO4 + 7H2O$	
ν (атомов) = 9,045·10 ²³ /6,02·10 ²³ = 1,5 моль	2
v(Na5FeO4) = 1,5/10 = 0,15 моль	
v(Fe3O4) = 0.15/2 = 0.075 моль	
$m(\text{Fe3O4}) = 232 \cdot 0.075 = 17.4 \text{G}$	
Максимальный балл	6

ЗАДАНИЕ 3 (6 баллов)

3-1. К веществам, предназначенные для применения в аэрозольных упаковках медицинских препаратов, относятся пропелленты (эвакуирующие газы). Наиболее часто применяемыми пропеллентами в аэрозольных рецептурах являются фреоны, азот, диоксид углерода. Фреоны — производные алканов, в которых все атомы водорода замещены на атомы фтора и хлора. В эквимолярной (содержащей равные количества вещества) смеси фреона и азота с относительной плотностью по аргону 2,49 массовая доля атомарного фтора составляет 38,19%. Определите общее число атомов всех элементов в 5,04 л (н.у.) такой смеси.

Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	
$M(\text{смеси}) = 2,49.40 = 99,6 \ \text{г/моль}$	2
$M(\phi peo Ha) = 99,6.2 - 28 = 171,2 г/моль$	
$m(F) = 99,6 \cdot 2 \cdot 0,3819 = 76$	
n(F) = 76/19 = 4 — число атомов фтора в молекуле фреона	
$C_xF_4Cl_z$	
$4+Z=2x+2$ откуда $Z=2x-2$, следовательно $C_xF_4Cl_{2X-2}$	2
12x+76+71x-71=171,2	
X=2	

Φ ормула $C_2F_4Cl_2$	
Количество вещества смеси: $v(C_2F_4Cl_2 + N_2) = 5,04/22,4 = 0,225$ моль	2
Количество вещества атомов в смеси: $v(\text{атомов}) = (8+2) \cdot 0,225/2 = 1,125$ моль	
$N(\text{атомов}) = 1{,}125 \cdot 6{,}02 \cdot 10^{23} = 6{,}77 \cdot 10^{23}$	
Максимальный балл	6

ЗАДАНИЕ 4 (8 баллов)

4-1. В фармацевтическом производстве в качестве сульфирующего водоотнимающего реагента находит применение олеум. Рассчитайте соотношение, в котором следует смешать 85% раствор H_2SO_4 и 25% олеум, для получения 100% безводной серной кислоты.

Содержание верного с	ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа,	, не искажающие его смысла)	
$m(p-pa H_2SO_4)=x$	т(олеум)= у	4
$m(H_2SO_4) = 0.85x$	$m(SO_3) = 0.25y$	
$m(H_2O) = 0.15x$	$m(H_2SO_4) = 0.75y$	
$v (H_2O) = 0.0083x$	•	
$v (SO_3) = 0.003125y$		
		2
$H_2O+SO_3=H_2SO_4$		
$v (H_2O) = v (SO_3)$		
0.0083x = 0.003125y		
y=2.7x		2
т(олеума):т(кислоты) =2.7:1	
Максимальный балл		8

ЗАДАНИЕ 5 (10 баллов)

5-1. Ибупрофен – нестероидное противовоспалительное лекарственное средство (НПВС), является производным пропионовой кислоты. Ибупрофен синтезируют из изобутилбензола согласно схеме:

Масса изобутилбензола равна 603 г, масса 1-(4-изобутилфенил)этанола равна 320,4 г. Определите массу полученного ибупрофена, если выход каждой следующей реакции в 1,6 раз меньше, чем предыдущей.

Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	
ν (C10H14) = $603/134 = 4,5$ моль	2
ν (C12H18O) = 320,4/178 = 1,8 моль	
Пусть выход первой реакции $\eta_1 = 1,6x$, тогда выход второй реакции $\eta_2 = x$	4
$4.5 \cdot 1.6 \times x = 1.8$	
$X^2 = 0.25$	
X = 0.5	
Выход третьей реакции $\eta_3 = 0.5/1.6 = 0.3125$	2

v(C13H18O2) = 1,8.0,3125 = 0,5625 моль	2
$M(C13H18O2) = 206 \ \Gamma/моль$	
$m(C13H18O2) = 0.5625 \cdot 206 = 115.9 \Gamma$	
Максимальный балл	10

ЗАДАНИЕ 6 (10 баллов)

6-1. Свинец применяется в медицине для изготовления защитных пластин и фартуков от рентгеновского излучения, поскольку не пропускает гамма-лучи. Соединения свинца ацетат) (оксиды, используются В медицине качестве антисептиков, противовоспалительных и вяжущих средств в составе пластырей, примочек. Имеются два оксида свинца А и В, в которых массовые доли свинца относятся как 20:21. Оксид А не растворяется в разбавленной азотной кислоте, но реагирует с пероксидом водорода в присутствии азотной кислоты, а также реагирует с горячей концентрированной серной кислотой; в каждой реакции выделяется газ Х. Оксид В растворяется в разбавленной азотной кислоте с образованием осадка. Оба оксида А и В вступают в реакцию с горячей концентрированной соляной кислотой с образованием осадка и выделением газа Ү. Напишите уравнения пяти реакций.

РЕШЕНИЕ

Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	
Оксид A – PbO2 Оксид B – Pb3O4	2
$PbO2 + H2O2 + 2HNO3 \rightarrow Pb(NO3)2 + O2 + 2H2O$	
$2PbO2 + 2H2SO4 \rightarrow 2PbSO4 + O2 + 2H2O$	2
$Pb3O4 + 4HNO3 \rightarrow 2Pb(NO3)2 + PbO2 \downarrow + 2H2O$	2
$PbO2 + 4HC1 \rightarrow PbC12 + C12 + 2H2O$	2
$Pb3O4 + 8HC1 \rightarrow 3PbC12 + C12 + 4H2O$	2
Максимальный балл	10

ЗАДАНИЕ 7 (12 баллов)

7-1. Ацетилсалициловая кислота (аспирин) — лекарственное средство, оказывающее обезболивающее, жаропонижающее, противовоспалительное действие, также является блокатором циклооксигеназы тромбоцитов. Напишите уравнения реакций, соответствующих получению ацетилсалициловой кислоты (X_5) , если известно, что в веществе X_1 функциональные группы находятся у соседних атомов углерода.

Фенолят натрия
$$\xrightarrow{CO_2 t=150^{0}C}$$
 $X_1 \xrightarrow{H_2SO_4}$ $X_2 \xleftarrow{Na_2CO_3(водн)}$ $X_3 \xleftarrow{H_2SO_4}$ $X_4 \xrightarrow{(CH_3CO)_2O}$ $X_5 \xrightarrow{NaOH}$ $X_5 \xrightarrow{2-хлорфенол}$

Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	
COONa	2
$ONa + CO_2 \rightarrow OH$	

ЗАДАНИЕ 8 (12 баллов)

8-1. Элемент X, широко используемый в качестве конструкционного материала в ортопедической стоматологии, образует соединение $CaXO_3$, в котором массовая доля кислорода составляет 35,29%. Простое вещество X реагирует с концентрированным горячим раствором хлороводородной кислоты в молярном соотношении 1:3, при этом образуется вещество (A) темно-фиолетового цвета. Вещество A выделили из раствора в виде кристаллогидрата (B) светло-фиолетового цвета. Массовая доля кислорода в кристаллогидрате составляет 36,57%. При взаимодействии (B) с разбавленным раствором гидроксида натрия образуется темно-красный осадок вещества (C). Осадок отделили от раствора и прокалили со смесью нитрата калия и гидроксида калия, при этом выделился газ (Д), вызывающий почернение бумаги, смоченной раствором $Hg_2(NO_3)_2$. Рассчитайте объем газа Д (н.у.), если масса взятого кристаллогидрата В равна 105 г.

Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	
$M(CaXO_3) = 3.16/0,3529 = 136$ г/моль	2
$A_r(X) = 136 - 40 - 48 = 48 => X - \text{это Ti}$	
$2Ti + 6HC1 \rightarrow 2TiC13 + 3H2$	2
TiCl3·nH2O	
16n = 0.3657(154.5 + 18n)	
n = 6	
$\nu(\text{TiCl3}\cdot6\text{H2O}) = 105/262,5 = 0,4$ моль	2
$TiCl3 + 3NaOH \rightarrow Ti(OH)3 + 3NaCl$	2
$8\text{Ti}(\text{OH})3 + \text{KNO3} + 15\text{KOH} \rightarrow 8\text{K2TiO3} + \text{NH3} + 18\text{H2O}$	2
v(NH3) = 0.4/8 = 0.05 моль	2
$V(NH3) = 22,4.0,05 = 1,12 \pi$	

Максимальный балл	12

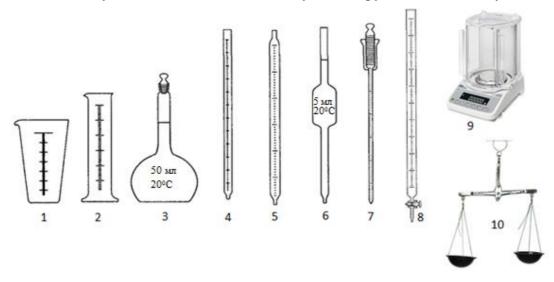
ЗАДАНИЕ 9 (12 баллов)

9-1. Лекарственные препараты сульфата цинка используются в медицине в качестве противомикробных (антисептических) средств для наружного применения и в зависимости от концентрации оказывают вяжущее, раздражающее или прижигающее действие. При электролизе 300 г раствора сульфата цинка с плотностью 1,2 г/мл и концентрацией соли 1,2 моль/л образовалось 35,84 л (н.у.) смеси газов с относительной плотностью по воздуху 0,457. К полученному после электролиза раствору добавили 160 г 20%-ного раствора гидроксида натрия. Определите молярные концентрации веществ в итоговом растворе, если его плотность 1,11 г/мл.

РЕШЕНИЕ

РЕШЕНИЕ	
Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	
$2ZnSO4 + 2H2O \rightarrow 2Zn + O2 + 2H2SO4$	2
$2H2O \rightarrow 2H2 + O2$	
V(pacтвоpa) = 300/1,2 = 250 мл = 0,25 л	
$\nu(ZnSO4) = 1,2 \cdot 0,25 = 0,3$ моль	
ν (смеси газов) = 35,84/22,4 = 1,6 моль	2
m(смеси газов) = 1,6·0,457·29 = 21,2 г	
Пусть разложилось: $v(ZnSO4) = x$; $v(H2O) = y$	2
$\int_{0.5x} 0.5x + 1.5y = 1.6$	
(16(x+y) + 2y = 21,2)	
$\int x = 0.2$	
y = 1	
v(ZnSO4) ост. = $0.3 - 0.2 = 0.1$ моль	2
$\nu(H2SO4) = 0.2$ моль	
m(pacтворa) = 300 - 0.2.65 - 21.2 = 265.8 г	
$v(NaOH) = 160 \cdot 0.2/40 = 0.8 \text{ моль}$	
V(14dO11) 100 0,2/40 0,6 MOJIB	
$H2SO4 + 2NaOH \rightarrow Na2SO4 + 2H2O$	2
$ZnSO4 + 4NaOH \rightarrow Na2SO4 + Na2[Zn(OH)4]$	
$\nu(\text{Na2SO4}) \text{ ост.} = 0.2 + 0.1 = 0.3 \text{ моль}$	
$\nu(\text{Na2}[\text{Zn}(\text{OH})4]) = 0,1$ моль	
$m(pacтворa) = 265,8 + 160 = 425,8 \ \Gamma$	
V(pacтвоpa) = 425,8/1,08 = 383,6 мл = 0,3836 л	2
C(Na2SO4) = 0,3/0,3836 = 0,782 моль/л	
C(Na2[Zn(OH)4]) = 0,1/0,3836 = 0,26 моль/л	
Максимальный балл	12

ЗАДАНИЕ 10 (18 баллов)


10-1. Хлорид аммония используется в медицине в качестве диуретического средства при метаболическом алкалозе, отеках сердечного происхождения, а также в качестве

отхаркивающего средства при заболеваниях легких. Для количественного определения хлорид аммония растворяют в мерной колбе объемом 25,0 мл. К пробе раствора объемом 2,0 мл добавляют избыток раствора формальдегида (метаналя) и индикатор фенолфталеин. Полученный бесцветный раствор титруют раствором гидроксида натрия с концентрацией 0,1 моль/л. До появления бледно-розовой окраски раствора потребовалось добавить 10,5 мл раствора щелочи. Напишите уравнения реакций, если известно, что при взаимодействии соли аммония с избытком формальдегида образуется уротропин. Рассчитайте массу хлорида аммония в исходном растворе.

Уротропин (Гексаметилентетрамин):

Выберите необходимую для проведения анализа аналитическую посуду и оборудование, назовите их и укажите, для чего данная посуда и оборудование используются.

гешение	
Элемент ответа	балл
1) Написаны уравнения реакций:	4
$4 \text{ NH}_4\text{Cl} + 6\text{CH}_2\text{O} \rightarrow (\text{CH}_2)_6\text{N}_4 + 4 \text{ HCl} + 6 \text{ H}_2\text{O}$	
$HCl + NaOH \rightarrow NaCl + H_2O$	
2) Рассчитано количество вещества хлорида аммония в аликвоте:	2
ν (NH ₄ Cl) = ν (HCl) = ν (NaOH) = 0,1 · 10,5 = 1,05 ммоль	
3) Рассчитано количество вещества хлорида аммония в растворе:	2
ν (NH ₄ Cl) = 1,05 · 25,0 / 2,0 = 13,125 ммоль	
4) Рассчитана масса хлорида аммония в исходном растворе:	2
m (NH ₄ Cl) = $13,125 \cdot 53,5 = 702 \text{ M}\Gamma = 0,702 \Gamma$	
3 – мерная колба – для приготовления точного объема раствора	6
анализируемого вещества;	

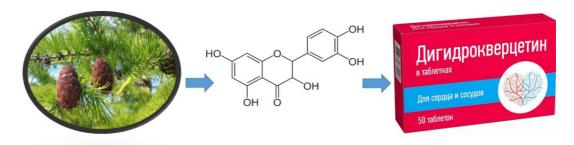
6 – пипетка Мора – для взятия аликвотной доли анализируемого раствора;	
8 – бюретка – для определения объема титранта;	
9 – аналитические весы – для взятия точной навески анализируемого	
вещества.	
Максимальный балл	18

Материалы заданий заключительного этапа Всероссийской Сеченовской олимпиады школьников по биологии 2023г. с ответами на задания, с указанием выставляемых баллов за каждое задание.

10 класс

ВАРИАНТ 2

ЗАДАНИЕ 1 (6 баллов)


1-2. Ученые кафедры химии Семёновского университета активно участвуют в научных исследованиях, начатых в конце 20-го века под руководством доктора хим. наук, профессора, Заслуженного деятеля науки РФ Тюкавкиной Н.А. по разработке методов анализа и стандартизации лекарственных средств на основе дигидрокверцитина – флавоноидного соединения, обладающего высокой антиоксидантной активностью, выделенного из древесины лиственницы Larix lignum

Профессор Тюкавкина Нонна Арсеньевна

Формула дигидрокверцитина приведена на схеме. Рассчитайте, во сколько раз массовая доля атомарного кислорода в соединении меньше массовой доли атомарного углерода, а также объем углекислого газа (давление $103.5~\mathrm{kHa}$, температура $20^{0}\mathrm{C}$), который выделится при сжигании $71,5294~\mathrm{r}$ дигидрокверцитина, содержащего помимо основного вещества 15% примесей, не содержащих углерод.

Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	
Формула дигидрокверцитина $C_{15}H_{12}O_7$.	2

$M(C_{15}H_{12}O_7)=304 \ \Gamma \ \text{моль};$	
Рассчитаем массовые доли атомарных кислорода и водорода в дигидрокверцитине: $\omega(O){=}m(O)\backslash M(C_{15}H_{12}O_7){=}36,8\%$ $\omega(C){=}m(C)\backslash M(C_{15}H_{12}O_7){=}59,2\%$ $\omega(C)\backslash \omega(O){=}1,61$ Массовая доля атомарного кислорода в 1,61 раза меньше массовой доли атомарного углерода.	2
Уравнение реакции горения: $2C_{15}H_{12}O_7 + 29O_2 = 30CO_2 + 12H_2O$ $m(C_{15}H_{12}O_7 \text{ чистого вещества}) = 71.5294 \cdot 0,85 = 60,8 \text{ г}$ $n(C_{15}H_{12}O_7) = 60,8/304 = 0,2 \text{ моль}$ $n(CO_2) = 15n(C_{15}H_{21}O_7) = 3 \text{ моль}$ $V(CO_2) = 3 \cdot 8,31 \cdot 293/103,5 = 70,6 \text{ л}$	2
Максимальный балл	6

ЗАДАНИЕ 2 (6 баллов)

2-2. Железную окалину сплавили при 450° С с избытком гидроксида натрия, при этом образовалась смесь двух солей. В первой соли массовая доля кислорода 27,23%, а массовая доля натрия 48,94%. Во второй соли каждый второй атом — атом натрия. Напишите уравнение реакции. Определите массу взятой железной окалины, если в результате реакции масса твердого вещества уменьшилась на 9,45 г.

РЕШЕНИЕ

Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	
Первая соль:	2
Na:Fe:O = $48,94/23$: $23,83/56$: $27,23/16 = 5$:1:4 => Na5FeO4 (Fe ⁺³)	
Вторая соль (Fe^{+2}):	
NaxFeOy	
x = y + 1	
x+2=2y отсюда $x=4$; $y=3$ => Na4FeO3	
Уравнение реакции:	2
$Fe3O4 + 14NaOH \rightarrow Na4FeO3 + 2Na5FeO4 + 7H2O$	
v(H2O) = 9,45/18 = 0,525 моль	2
v(Fe3O4) = 0.525/7 = 0.075 моль	
$m(Fe3O4) = 232 \cdot 0.075 = 17.4 \Gamma$	
Максимальный балл	6

ЗАДАНИЕ 3 (6 баллов)

3-2. К веществам, предназначенные для применения в аэрозольных упаковках медицинских препаратов, относятся пропелленты (эвакуирующие газы). Наиболее часто применяемыми пропеллентами в аэрозольных рецептурах являются фреоны, азот, диоксид углерода. Фреоны — производные углеводородов, в которых все атомы водорода замещены на атомы фтора. В эквимолярной (содержащей равные количества вещества) смеси фреона и углекислого газа с относительной плотностью по неону 6,1 массовая доля атомов углерода составляет 24,59%. Определите общее число атомов всех элементов в 7,84 л (н.у.) такой смеси.

Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	
$M(\text{смеси}) = 6,1.20 = 122 \ \Gamma/\text{моль}$	2
$M(\phi peo Ha) = 122 \cdot 2 - 44 = 200 \ г/моль$	
$m(C) = 122 \cdot 2 \cdot 0,2459 = 60$	
n(C) = (60/12) - 1 = 4 – число атомов углерода в молекуле фреона	
C_4F_x	
12.4 + 19x = 200	2
X = 8	
Φ ормула C_4F_8	
Количество вещества смеси: $v(C_4F_8 + CO_2) = 7,84/22,4 = 0,35$ моль	2
Количество вещества атомов в смеси: ν (атомов) = $(12+3)\cdot 0.35/2 = 2.625$ моль	
$N(\text{атомов}) = 2,625 \cdot 6,02 \cdot 10^{23} = 1,58 \cdot 10^{24}$	
Максимальный балл	6

ЗАДАНИЕ 4 (8 баллов)

4-2. В фармацевтическом производстве в качестве сульфирующего водоотнимающего реагента находит применение олеум. Рассчитайте соотношение, в котором следует смешать 90% раствор H_2SO_4 и 30% олеум, для получения 100% безводной серной кислоты.

Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	
$m(p-pa H_2SO_4)= x$ $m(олеум)= y$	4
$m(H_2SO_4) = 0.9x$ $m(SO_3) = 0.3y$	
$m(H_2O) = 0.1x$ $m(H_2SO_4) = 0.7y$	
$v (H_2O) = 0.0055x$	
$v (SO_3) = 0.000121y$	
$H_2O+SO_3 = H_2SO_4$	2
$\upsilon (H_2O) = \upsilon (SO_3)$	
0.0055x = 0.000121y	
·	
y=45.5x	2
m(олеума):m(кислоты) =45.5:1	
Максимальный балл	8

ЗАДАНИЕ 5 (10 баллов)

5-2. Ибупрофен – нестероидное противовоспалительное лекарственное средство (НПВС), является производным пропионовой кислоты. Ибупрофен синтезируют из изобутилбензола согласно схеме:

Масса полученного ибупрофена равна 61,8 г, масса (4-изобутилфенил)метилкетона равна 220 г. Определите массу взятого изобутилбензола, если выход каждой следующей реакции в 1,5 раза меньше, чем предыдущей.

Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	
v(C13H18O2) = 61,8/206 = 0,3 моль	2

ν (C12H16O) = 220/176 = 1,25 моль	
Пусть выход второй реакции $\eta_2 = 1,5x$, тогда выход третьей реакции $\eta_3 = x$	4
$1,25 \cdot 1,5x \cdot x = 0,3$	
$X^2 = 0.16$	
X = 0,4	
Выход первой реакции $\eta_1 = 0,4 \cdot 1,5 \cdot 1,5 = 0,9$	2
ν (C10H14) = 1,25/0,9 = 1,389 моль	2
M(C10H14) = 134 г/моль	
$m(C10H14) = 1,389 \cdot 134 = 186,1 \Gamma$	
Максимальный балл	10

ЗАДАНИЕ 6 (10 баллов)

6-2. Свинец применяется в медицине для изготовления защитных пластин и фартуков от рентгеновского излучения, поскольку не пропускает гамма-лучи. Соединения свинца ацетат) используются медицине качестве В В противовоспалительных и вяжущих средств в составе пластырей, примочек. Имеются два оксида свинца А и В, в которых массовые доли кислорода относятся как 3:4. Оксид А растворяется в разбавленной азотной кислоте, при этом осадок не образуется, а также растворяется в разбавленной соляной кислоте с образованием осадка. Оксид В растворяется в разбавленной азотной кислоте с образованием осадка и не реагирует с разбавленной соляной кислотой. Оба оксида А и В растворяются в горячем концентрированном растворе щелочи с образованием комплексных солей разного состава. Напишите уравнения пяти реакций.

РЕШЕНИЕ

Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	
Оксид A – PbO Оксид B – Pb3O4	2
$PbO + 2HNO3 \rightarrow Pb(NO3)2 + H2O$	
$PbO + 2HCl \rightarrow PbCl2 + H2O$	2
$Pb3O4 + 4HNO3 \rightarrow 2Pb(NO3)2 + PbO2 \downarrow + 2H2O$	2
$PbO + 2NaOH + H2O \rightarrow Na2[Pb(OH)4]$	2
$Pb3O4 + 6NaOH + 4H2O \rightarrow 2Na2[Pb(OH)4] + Na2[Pb(OH)6]$	2
Максимальный балл	10

ЗАДАНИЕ 7 (12 баллов)

7-2. Парабены — сложные эфиры пара-гидроксибензойной кислоты, широко используемые в качестве консервантов в офтальмологических растворах, в фармацевтической и пищевой промышленности благодаря антисептическим и фунгицидным свойствам. Напишите уравнения реакций, соответствующих получению метилпарабена (X_5) , если известно, что в веществе X_3 функциональные группы максимально удалены друг от друга.

Фенолят калия
$$\xrightarrow{CO_2 t=150^{\circ}C} X_1 \xrightarrow{HCl} X_2 \xleftarrow{H_2SO_4} X_3 \xleftarrow{K_2CO_3(t^0)} X_4 \xleftarrow{KMnO_4} 2$$
-метилфенол X_5

Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	

ЗАДАНИЕ 8 (12 баллов)

8-2. Элемент X, широко используемый в качестве конструкционного материала в ортопедической стоматологии, образует соединение K_4XO_4 , в котором массовая доля калия составляет 58,21%. Простое вещество X реагирует с концентрированным горячим раствором хлороводородной кислоты в молярном соотношении 1:3, при этом образуется вещество (A) темно-фиолетового цвета. Вещество A выделили из раствора в виде кристаллогидрата (B) светло-фиолетового цвета. Массовая доля хлора в кристаллогидрате составляет 40,57%. При взаимодействии (B) с разбавленным раствором гидроксида натрия образуется темно-красный осадок вещества (C). Осадок отделили от раствора и прокалили со смесью нитрата калия и гидроксида калия, при этом выделился газ (Д) вызывающий почернение бумаги, смоченной раствором $Hg_2(NO_3)_2$. Рассчитайте объем газа Д (н.у.), если масса взятого кристаллогидрата В равна 84 г. РЕШЕНИЕ

Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	
$M(K_4XO_4) = 4.39/0,5821 = 268$ г/моль	2
$A_r(X) = 268 - 4(39+16) = 48 => X - 3$ To Ti	
$2Ti + 6HC1 \rightarrow 2TiC13 + 3H2$	2
TiCl3·nH2O	
$35,5\cdot3 = 0,4057(154,5+18n)$	
n = 6	

$\nu(\text{TiCl3}\cdot6\text{H2O}) = 84/262,5 = 0,32 \text{ моль}$	2
$TiCl3 + 3NaOH \rightarrow Ti(OH)3 + 3NaCl$	2
$8Ti(OH)3 + KNO3 + 15KOH \rightarrow 8K2TiO3 + NH3 + 18H2O$	2
$\nu(NH3) = 0.32/8 = 0.04$ моль	2
$V(NH3) = 22,4.0,04 = 0,896 \pi$	
Максимальный балл	12

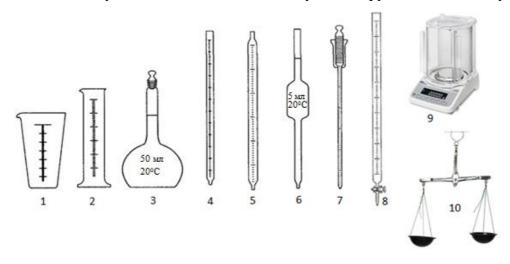
ЗАДАНИЕ 9 (12 баллов)

9-2. Лекарственные препараты сульфата цинка используются в медицине в качестве противомикробных (антисептических) средств для наружного применения и в зависимости от концентрации оказывают вяжущее, раздражающее или прижигающее действие. При электролизе 360 г раствора сульфата цинка с плотностью 1,2 г/мл и концентрацией соли 1,5 моль/л образовалось 19,6 л (н.у.) смеси газов с плотностью 0,663 г/л. К полученному после электролиза раствору добавили 70 г 20%-ного раствора гидроксида калия. Определите молярные концентрации веществ в итоговом растворе, если его плотность 1,075 г/мл.

РЕШЕНИЕ

TEMETIME	
Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	
$2ZnSO4 + 2H2O \rightarrow 2Zn + O2 + 2H2SO4$	2
$2H2O \rightarrow 2H2 + O2$	
V(pacтворa) = 360/1,2 = 300 мл = 0,3 л	
$v(ZnSO4) = 1,5 \cdot 0,3 = 0,45$ моль	
v(смеси газов) = 19,6/22,4 = 0,875 моль	2
m(смеси газов) = 19,6·0,663 = 13 г	
Пусть разложилось: $v(ZnSO4) = x$; $v(H2O) = y$	2
$\int 0.5x + 1.5y = 0.875$	
16(x+y) + 2y = 13	
$\int (x = 0.25)$	
(y = 0.5)	
ν (ZnSO4) ост. = 0,45 – 0,25 = 0,2 моль	2
$\nu(\text{H2SO4}) = 0.25 \text{ моль}$	
m(pаствора) = 360 - 0.25.65 - 13 = 330.75 г	
$\nu(\text{KOH}) = 70.0,2/56 = 0,25 \text{ моль}$	
$H2SO4 + KOH \rightarrow KHSO4$	2
ν (KHSO4) = 0,25 моль	
m(pacтворa) = 330,75 + 70 = 400,75 г	
V(pacтвоpa) = 400,75 / 1,075 = 372,8 мл = 0,3728 л	2
C(KHSO4) = 0.25/0.3728 = 0.67 моль/л	
C(ZnSO4) = 0,2/0,3728 = 0,536 моль/л	
Максимальный балл	12

ЗАДАНИЕ 10 (18 баллов)


10-2. Хлорид аммония используется в медицине в качестве диуретического средства при метаболическом алкалозе, отеках сердечного происхождения, а также в качестве отхаркивающего средства при заболеваниях легких. Для количественного определения хлорид аммония растворяют в мерной колбе объемом 50,0 мл. К пробе раствора объемом 5,0 мл добавляют избыток раствора формальдегида (метаналя) и индикатор фенолфталеин. Полученный бесцветный раствор титруют раствором гидроксида натрия с концентрацией 0,2 моль/л. До появления бледно-розовой окраски раствора потребовалось добавить 8,0 мл раствора щелочи. Напишите уравнения реакций, если известно, что при

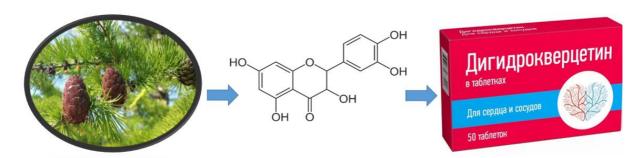
взаимодействии соли аммония с избытком формальдегида образуется уротропин . Рассчитайте массу хлорида аммония в исходном растворе.

Уротропин (Гексаметилентетрамин):

Выберите необходимую для проведения анализа аналитическую посуду и оборудование, назовите их и укажите, для чего данная посуда и оборудование используются.

РЕШЕНИЕ	
Элемент ответа	балл
1) Написаны уравнения реакций:	4
$4 \text{ NH}_4\text{Cl} + 6\text{CH}_2\text{O} \rightarrow (\text{CH}_2)_6\text{N}_4 + 4 \text{ HCl} + 6 \text{ H}_2\text{O}$	
$HCl + NaOH \rightarrow NaCl + H_2O$	
2) Рассчитано количество вещества хлорида аммония в аликвоте:	2
ν (NH ₄ Cl) = ν (HCl) = ν (NaOH) = 0,2 · 8,0 = 1,6 ммоль	
3) Рассчитано количество вещества хлорида аммония в растворе:	2
ν (NH ₄ Cl) = 1,6 · 50,0 / 5,0 = 16 ммоль	
4) Рассчитана масса хлорида аммония в исходном растворе:	4
m (NH ₄ Cl) = $16 \cdot 53.5 = 856$ мг = 0.856 г	
3 – мерная колба – для приготовления точного объема раствора	6
анализируемого вещества;	
6 – пипетка Мора – для взятия аликвотной доли анализируемого раствора;	
8 – бюретка – для определения объема титранта;	
9 – аналитические весы – для взятия точной навески анализируемого	
вещества.	
Максимальный балл	18

ВАРИАНТ 3


Ученые кафедры химии Сеченовского университета активно участвуют в научных исследованиях, начатых в конце 20-го века под руководством доктора хим. наук, профессора, Заслуженного деятеля науки РФ Тюкавкиной Н.А., по разработке методов анализа и стандартизации лекарственных средств на основе дигидрокверцитина – флавоноидного соединения, обладающего высокой антиоксидантной активностью, выделенного из древесины лиственницы Larix lignum.

Профессор Тюкавкина Нонна Арсеньевна

Формула дигидрокверцитина приведена на схеме. Рассчитайте во сколько раз массовая доля атомарного водорода в соединении меньше массовой доли атомарного углерода, а также объем углекислого газа (давление 100кПа, температура 200С), который выделится при сжигании 97 г дигидрокверцитина, содержащего помимо основного вещества 6% примесей, не содержащих углерод.

Содержание верного ответа и указания по оцениванию (допускаются иные формулировки ответа, не искажающие его смысла)	Баллы
Формула дигидрокверцитина С15Н12О7.	2
М(С15Н12О7)=304 г \моль;	
Рассчитаем массовые доли атомарных кислорода и водорода в дигидрокверцитине: $\omega(H) = m(H) \backslash M(C15H21O7) = 3,95\%$ $\omega(C) = m(C) \backslash M(C15H21O7) = 59,2\%$ $\omega(C) \backslash \omega(H) = 15 \text{ или } \omega(C) \backslash \omega(H) = 12 \cdot 15/12 = 15$ в 15 раз.	2
Уравнение реакции горения: 2C15H21O7+33,5O2=30CO2+21H2O m(C15H21O7 чистого вещества)=97·0,94=91,2 г n(C15H21O7) = 91,2/304=0,3 моль n(CO2) = 15n(C15H21O7) = 15·0,3 = 4,5 моль V(CO2) = 4,5·8,31·293/100 = 109,5 л	2

Максимальный балл	6

ЗАДАНИЕ 2 (6 баллов)

Железную окалину сплавили при 5000С с избытком гидроксида калия, при этом образовалась смесь двух солей. В первой соли массовая доля кислорода 18,46%, а массовая доля калия 60,0%. Во второй соли на один атом железа приходится 5 атомов калия, а суммарное число всех атомов равно 1,806·1024. Напишите уравнение реакции. Определите массу взятой железной окалины.

РЕШЕНИЕ

Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	
Первая соль:	2
K:Fe:O = 60/39: 21,54/56:18,46/16 = 4:1:3 => K4FeO3 (Fe+2)	
Вторая соль: т.к. Fe+3 => K5FeO4	
Уравнение реакции:	2
$Fe3O4 + 14KOH \rightarrow K4FeO3 + 2K5FeO4 + 7H2O$	
ν (атомов) = 1,806·1024/6,02·1023 = 3 моль	2
v(K5FeO4) = 3/10 = 0.3 моль	
v(Fe3O4) = 0.3/2 = 0.15 моль	
$m(Fe3O4) = 232 \cdot 0.15 = 34.8 \Gamma$	
Максимальный балл	6

ЗАДАНИЕ 3 (6 баллов)

К веществам, предназначенные для применения в аэрозольных упаковках медицинских препаратов, относятся пропелленты (эвакуирующие газы). Наиболее часто применяемыми пропеллентами в аэрозольных рецептурах являются фреоны, азот, диоксид углерода. Фреоны – производные алканов, в которых все атомы водорода замещены на атомы фтора и хлора. В эквимолярной (содержащей равные количества вещества) смеси фреона и азота с относительной плотностью по кислороду 2,586 массовая доля атомарного хлора составляет 64,66%. Определите общее число атомов всех элементов в 7,84 л (н.у.) такой смеси.

1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	
$M(\text{смеси}) = 2,586 \cdot 32 = 82,75 \ \Gamma/\text{моль}$	2
$M(\phi peo Ha) = 82,75 \cdot 2 - 28 = 137,5 г/моль$	
$m(C1) = 82,75 \cdot 2 \cdot 0,6466 = 107$	
n(Cl) = 107/35,5 = 3 — число атомов хлора в молекуле фреона	
CxFyCl3	
3+Y=2x+2 откуда $Y=2x-1$, следовательно CxF2X-1Cl3	2
12x+38x-19+106,5=137,5	
X = 1	
Формула CFC13	
Количество вещества смеси: $v(CFC13 + N2) = 7,84/22,4 = 0,35$ моль	2
Количество вещества атомов в смеси: $v(\text{атомов}) = (5+2) \cdot 0.35/2 = 1.225$ моль	
N(atomob) = 1,225.6,02.1023 = 7,37.1023	
Максимальный балл	6

ЗАДАНИЕ 4 (8 баллов)

В фармацевтическом производстве в качестве сульфирующего водоотнимающего реагента находит применение олеум. Рассчитайте соотношение, в котором следует смешать 90% раствор H2SO4 и 30% олеум, для получения 100% безводной серной кислоты.

Содержание верного отв	ета и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не	е искажающие его смысла)	
m(p-pa H2SO4)= x	т(олеум)= у	2
m(H2SO4) = 0.9x	m(SO3) = 0.3y	
m(H2O) = 0.1x	m(H2SO4) = 0.7y	
υ (H2O)=0,0055x		4
υ (SO3)=0,00375y		
H2O+SO3 =H2SO4		
v (H2O) = v (SO3)		2
0,0055x=0,00375y		
y=1,48x		
m(олеума):m(кислоты) =	1,48:1	
Максимальный балл		8

ЗАДАНИЕ 5 (10 баллов)

Ибупрофен – нестероидное противовоспалительное лекарственное средство (НПВС), является производным пропионовой кислоты. Ибупрофен синтезируют из изобутилбензола согласно схеме:

Масса изобутилбензола равна 335 г, масса 1-(4-изобутилфенил)этанола равна 161,5 г. Определите массу полученного ибупрофена, если выход первой реакции в 1,2 раза больше, чем второй реакции, а выход третьей реакции в 1,5 раза меньше, чем первой. РЕШЕНИЕ

Содержание верного ответа и указания по оцениванию (допускаются иные формулировки ответа, не искажающие его смысла)	Баллы
v(C10H14) = 335/134 = 2,5 моль $v(C12H18O) = 161,5/178 = 0,9073$ моль	2
Пусть выход первой реакции $\eta 1=1,2x$, выход второй реакции $\eta 2=x$ $2,5\cdot 1,2x\cdot x=0,9073$ $X2=0,3024$ $X=0,55$	4
Выход третьей реакции $\eta 3 = 0.55 \cdot 1.2 / 1.5 = 0.44$	2
$v(C13H18O2) = 0,9073 \cdot 0,44 = 0,4$ моль $M(C13H18O2) = 206$ г/моль $m(C13H18O2) = 0,4 \cdot 206 = 82,4$ г	2
Максимальный балл	10

ЗАДАНИЕ 6 (10 баллов)

Свинец применяется в медицине для изготовления защитных пластин и фартуков от рентгеновского излучения, поскольку не пропускает гамма-лучи. Соединения свинца (оксиды, ацетат) используются В медицине качестве антисептиков. противовоспалительных и вяжущих средств в составе пластырей, примочек. Имеются два оксида свинца А и В, в которых массовые доли свинца относятся как 20:21. Оксид А не растворяется в разбавленной азотной кислоте, но реагирует с пероксидом водорода в присутствии азотной кислоты, а также реагирует с горячей концентрированной серной кислотой; в каждой реакции выделяется газ Х. Оксид В растворяется в разбавленной азотной кислоте с образованием осадка. Оба оксида А и В вступают в реакцию с горячей концентрированной соляной кислотой с образованием осадка и выделением газа Ү. Напишите уравнения пяти реакций.

РЕШЕНИЕ

Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	
Оксид A – PbO2 Оксид B – Pb3O4	2
$PbO2 + H2O2 + 2HNO3 \rightarrow Pb(NO3)2 + O2 + 2H2O$	
$2PbO2 + 2H2SO4 \rightarrow 2PbSO4 + O2 + 2H2O$	2
$Pb3O4 + 4HNO3 \rightarrow 2Pb(NO3)2 + PbO2 \downarrow + 2H2O$	2
$PbO2 + 4HC1 \rightarrow PbC12 + C12 + 2H2O$	2
Pb3O4 + 8HC1 → 3PbC12 + C12 + 4H2O	2
Максимальный балл	10

ЗАДАНИЕ 7 (12 баллов)

Из этилена в три стадии получите вещество X состава С13H16O4, которое при нагревании с раствором гидроксида калия образует вещество Y состава С9H12O2. Вещество Y при взаимодействии с хлороводородом превращается в вещество Z состава С9H10Cl2, а при взаимодействии вещества Y с подксиленным раствором пермангатата натрия, образуется вещество С9H6O6

Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	
C2H4 + 1/2 O2→ CH3-CHO кат PdCl2	2
CH3-CHO +[O] → CH3-COOH	2
2 CH3-COOH + CH3-C6H3-(CH2OH)2 → CH3-C6H3-(CH2OOC-CH3)2+ 2H2O	2
CH3-C6H3-(CH2OOC-CH3)2 + 2KOH→ CH3-C6H3-(CH2OH)2 + CH3-COOH	2
CH3-C6H3-(CH2OH)2 +2HCl → CH3-C6H3-(CH2Cl)2 +2H2O	2
5CH3-C6H3-(CH2OH)2 +14 KMnO4 + 21H2SO4 →	2
\rightarrow 5-C6H3-(COOH)2 + 14MnSO4 + 7K2SO4 + 36H2O	
Максимальный балл	12

ЗАДАНИЕ 8 (12 баллов)

Элемент X, широко используемый в качестве конструкционного материала в ортопедической стоматологии, образует соединение X2FeO4, в котором массовая доля X составляет 46,43%. Простое вещество X реагирует с концентрированным горячим раствором серной кислоты, при этом образуется вещество (A) темно-фиолетового цвета. Вещество A выделили из раствора в виде кристаллогидрата (В), в котором число атомов водорода в 1,2 раз больше, чем число атомов кислорода. При нагревании (В) до 8000С образуется твердый остаток вещества (С) темно-зеленого цвета. Вещество (С) прокалили со смесью нитрата натрия и карбоната натрия, при этом выделился газ (Д). Напишите уравнения реакций и рассчитайте объем газа Д (н.у.), если масса взятого кристаллогидрата В равна 35,8 г.

РЕШЕНИЕ

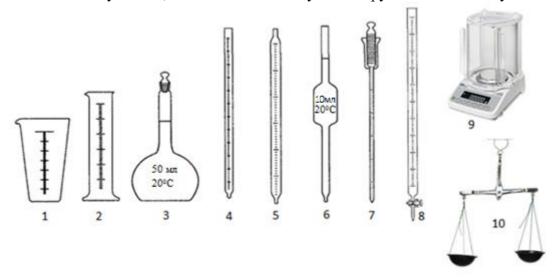
Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	
M(X2FeO4) = 2X/0,4643 = 4,31X	2
$2X + 56 + 64 = 4{,}31X$	
$X = 52 \Rightarrow X - 3$ To Cr	
$2Cr + 6H2SO4 \rightarrow Cr2(SO4)3 + 3SO2 + 6H2O$	2
Cr2(SO4)3 ·nH2O	
2n = 1,2(12 + n)	
n = 18	
$\nu(\text{Cr2}(\text{SO4})3 \cdot 18\text{H2O}) = 35,8/716 = 0,05 \text{ моль}$	2
$2Cr2(SO4)3\cdot18H2O \rightarrow 2Cr2O3 + 6SO2 + 3O2 + 36H2O$	2
$Cr2O3 + 3NaNO3 + 2Na2CO3 \rightarrow 2Na2CrO4 + 3NaNO2 + 2CO2$	2
$\nu(\text{CO2}) = 0.05 \cdot 2 = 0.1 \text{ моль}$	2
$V(NH3) = 22.4 \cdot 0.1 = 2.24 \pi$	
Максимальный балл	12

ЗАДАНИЕ 9 (12 баллов)

Лекарственные препараты сульфата цинка используются в медицине в качестве противомикробных (антисептических) средств для наружного применения и в зависимости от концентрации оказывают вяжущее, раздражающее или прижигающее действие. При электролизе 420 г раствора сульфата цинка с плотностью 1,05 г/мл и концентрацией соли 1,5 моль/л образовалось 17,92 л (н.у.) смеси газов с относительной плотностью по водороду 8,5. К полученному после электролиза раствору добавили 280 г 32%-ного раствора гидроксида калия. Определите молярные концентрации веществ в итоговом растворе, если его плотность 1,06 г/мл.

Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	
$2ZnSO4 + 2H2O \rightarrow 2Zn + O2 + 2H2SO4$	2
$2H2O \rightarrow 2H2 + O2$	
V(pacтворa) = 420/1,05 = 400 мл = 0,4 л	
$\nu(ZnSO4) = 1,5 \cdot 0,4 = 0,6$ моль	
ν (смеси газов) = 17,92/22,4 = 0,8 моль	2
m (смеси газов) = $0.8 \cdot 8.5 \cdot 2 = 13.6 \ \Gamma$	
Пусть разложилось: $\nu(ZnSO4) = x$; $\nu(H2O) = y$	2
$\int 0.5x + 1.5y = 0.8$	
16(x + y) + 2y = 13,6	
x = 0.4	
y = 0.4	
ν (ZnSO4) ост. = 0,6 – 0,4 = 0,2 моль	2
$\nu(\text{H2SO4}) = 0.4 \text{ моль}$	
m(pаствора) = 420 - 0.4.65 - 13.6 = 380.4 г	
ν (КОН) = $280 \cdot 0.32/56 = 1.6$ моль	
$H2SO4 + 2KOH \rightarrow K2SO4 + 2H2O$	2
$ZnSO4 + 4KOH \rightarrow K2SO4 + K2[Zn(OH)4]$	
$\nu(\text{K2SO4}) = 0.4 + 0.2 = 0.6 \text{ моль}$	
$\nu(\text{K2}[\text{Zn}(\text{OH})4]) = 0.2 \text{ моль}$	
m(pаствора) = 380,4 + 280 = 660,4 г	

V(pacтворa) = 660,4/1,06 = 623 мл = 0,623 л	2
C(K2SO4) = 0,6/0,623 = 0,96 моль/л	
C(K2[Zn(OH)4]) = 0,2/0,623 = 0,32 моль/л	
Максимальный балл	12


ЗАДАНИЕ 10 (18 баллов)

Хлорид аммония используется в медицине в качестве диуретического средства при метаболическом алкалозе, отеках сердечного происхождения, а также в качестве отхаркивающего средства при заболеваниях легких. Для количественного определения навеску технического (содержащего инертные примеси) хлорида аммония массой 0,400 г растворяют в мерной колбе объемом 50,0 мл. К пробе раствора объемом 10,0 мл добавляют избыток раствора формальдегида (метаналя) и индикатор фенолфталеин. Полученный бесцветный раствор титруют раствором гидроксида натрия с концентрацией 0,2 моль/л. До появления бледно-розовой окраски раствора потребовалось добавить 6,4 мл раствора щелочи. Напишите уравнения реакций, если известно, что при взаимодействии соли аммония с избытком формальдегида образуется уротропин. Рассчитайте массовую долю хлорида аммония в навеске.

Уротропин (Гексаметилентетрамин):

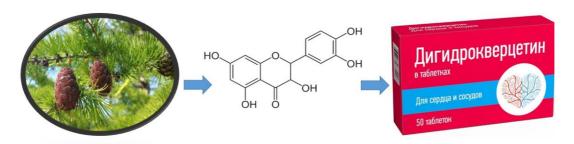
Выберите необходимую для проведения анализа аналитическую посуду и оборудование, назовите их и укажите, для чего данная посуда и оборудование используются.

Элемент ответа	балл
1) Написаны уравнения реакций:	4
$4 \text{ NH4C1} + 6 \text{CH2O} \rightarrow (\text{CH2})6 \text{N4} + 4 \text{ HC1} + 6 \text{ H2O}$	
$HCl + NaOH \rightarrow NaCl + H2O$	
2) Рассчитано количество вещества хлорида аммония в аликвоте:	2
ν (NH4Cl) = ν (HCl) = ν (NaOH) = 0,2 · 6,4 = 1,28 ммоль	
3) Рассчитано количество вещества хлорида аммония в растворе:	2
ν (NH4Cl) = 1,28 · 50,0 / 10,0 = 6,4 ммоль	
4) Рассчитана масса и массовая доля хлорида аммония:	2
$m \text{ (NH4C1)} = 6.4 \cdot 53.5 = 342 \text{ M}\Gamma = 0.342 \Gamma$	

$\omega(\text{NH4Cl}) = 0.342 \cdot 100/0.4 = 85.5\%$	
3 – мерная колба – для приготовления точного объема раствора	6
анализируемого вещества;	
6 – пипетка Мора – для взятия аликвотной доли анализируемого раствора;	
8 – бюретка – для определения объема титранта;	
9 – аналитические весы – для взятия точной навески анализируемого	
вещества.	
Максимальный балл	18

ВАРИАНТ 4

ЗАДАНИЕ 1 (6 баллов)


Ученые кафедры химии Семёновского университета активно участвуют в научных исследованиях, начатых в конце 20-го века под руководством доктора хим. наук, профессора, Заслуженного деятеля науки РФ Тюкавкиной Н.А. по разработке методов анализа и стандартизации лекарственных средств на основе дигидрокверцитина – флавоноидного соединения, обладающего высокой антиоксидантной активностью, выделенного из древесины лиственницы Larix lignum

Профессор Тюкавкина Нонна Арсеньевна

Формула дигидрокверцитина приведена на схеме. Рассчитайте, во сколько раз массовая доля атомарного углерода в соединении больше массовой доли атомарного водорода, а также объем углекислого газа (давление 105 кПа, температура 270С), который выделится при сжигании 54 г дигидрокверцитина, содержащего помимо основного вещества 10% примесей, не содержащих углерод.

Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	
Формула дигидрокверцитина С15Н12О7.	2
M(C15H12O7)=304 г \моль;	
Рассчитаем массовые доли атомарных кислорода и водорода в	2
дигидрокверцитине:	
$\omega(C) \setminus \omega(H) = 12 \cdot 15/12 = 15$	

в 15 раз.	
Уравнение реакции горения:	2
2C15H21O7+33,5O2=30CO2+21H2O	
m(C15H21O7 чистого вещества)= 54·0,9=48,6 г	
n(C15H21O7) = 48,6/304=0,16 моль	
$n(CO2) = 15n(C15H21O7) = 15 \cdot 0,16 = 2,4$ моль	
$V(CO2) = 2.4 \cdot 8.31 \cdot 300/105 = 57 \text{ J}$	
Максимальный балл	6

ЗАДАНИЕ 2 (6 баллов)

Железную окалину сплавили при 5000С с избытком гидроксида калия, при этом образовалась смесь двух солей. В первой соли массовая доля кислорода 20,32%, а массовая доля калия 61,9%. Во второй соли каждый второй атом – атом калия. Напишите уравнение реакции. Определите массу взятой железной окалины, если в результате реакции масса твердого вещества уменьшилась на 12,6 г.

РЕШЕНИЕ

Содержание верного ответа и указания по оцениванию (допускаются иные формулировки ответа, не искажающие его смысла)	Баллы
Первая соль:	2
K:Fe:O = 61,9/39: 17,78/56:20,32/16 = 5:1:4 => K5FeO4 (Fe+3)	
Вторая соль (Fe+2):	
KxFeOy	
x = y + 1	
x+2 = 2y отсюда $x = 4$; $y = 3 = K4FeO3$	
Уравнение реакции:	2
$Fe3O4 + 14KOH \rightarrow K4FeO3 + 2K5FeO4 + 7H2O$	
$\nu(\text{H2O}) = 12,6/18 = 0,7$ моль	2
$\nu(\text{Fe3O4}) = 0.7/7 = 0.1 \text{ моль}$	
$m(Fe3O4) = 232 \cdot 0,1 = 23,2 \Gamma$	
Максимальный балл	6

ЗАДАНИЕ 3 (6 баллов)

К веществам, предназначенные для применения в аэрозольных упаковках медицинских препаратов, относятся пропелленты (эвакуирующие газы). Наиболее часто применяемыми пропеллентами в аэрозольных рецептурах являются фреоны, азот, диоксид углерода. Фреоны — производные алканов, в которых все атомы водорода замещены на атомы фтора и хлора. В эквимолярной (содержащей равные количества вещества) смеси фреона и углекислого газа с относительной плотностью по азоту 3,84 массовая доля атомов углерода составляет 16,744%. Определите общее число атомов всех элементов в 10,304 л (н.у.) такой смеси.

Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	
$M(\text{смеси}) = 3,84.28 = 107,5 \ \Gamma/\text{моль}$	2
$M(\phi peo Ha) = 107,5 \cdot 2 - 44 = 171 \ г/моль$	
$m(C) = 107,5 \cdot 2 \cdot 0,16744 = 36$	
n(C) = (36/12) - 1 = 2 – число атомов углерода в молекуле фреона, тогда	
суммарное число атомов фтора и хлора равно 6.	
C2FxCl(6-x)	
$12 \cdot 2 + 19x + 35,5(6 - x) = 171$	2

X = 4	
Формула C2F4Cl2	
Количество вещества смеси: $v(C2F4C12 + CO2) = 10,304/22,4 = 0,46$ моль Количество вещества атомов в смеси: $v(\text{атомов}) = (8+3) \cdot 0,46/2 = 2,53$ моль $N(\text{атомов}) = 2,53 \cdot 6,02 \cdot 1023 = 1,523 \cdot 1024$	2
Максимальный балл	6

ЗАДАНИЕ 4 (8 баллов)

В фармацевтическом производстве в качестве сульфирующего водоотнимающего реагента находит применение олеум. Рассчитайте соотношение, в котором следует смешать 85% раствор H2SO4 и 25% олеум, для получения 100% безводной серной кислоты.

РЕШЕНИЕ

<u> </u>	гвета и указания по оцениванию (допускаются иные	Баллы
формулировки ответа,	не искажающие его смысла)	
m(p-pa H2SO4)=x	m(олеум)= y	2
m(H2SO4) = 0.85x	m(SO3) = 0.25y	
m(H2O) = 0.15x	m(H2SO4) = 0.75y	
υ (H2O)=0,0083x		4
υ (SO3)=0,003125y		
H2O+SO3 =H2SO4		
υ (H2O)= υ (SO3)		2
0,0083x=0,003125y		
y=2.7x		
m(олеума):m(кислоты)	=2.7:1	
Максимальный балл		8

ЗАДАНИЕ 5 (10 баллов)

Ибупрофен – нестероидное противовоспалительное лекарственное средство (НПВС), является производным пропионовой кислоты. Ибупрофен синтезируют из изобутилбензола согласно схеме:

Масса полученного ибупрофена равна 50,9 г, масса (4-изобутилфенил)метилкетона равна 246,4 г. Определите массу взятого изобутилбензола, если выходы второй и третьей реакции одинаковы, а выход первой реакции равен их суммарному выходу. РЕШЕНИЕ

Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	
ν (C13H18O2) = 50,9/206 = 0,247 моль	2
ν (C12H16O) = 246,4/176 = 1,4 моль	
Пусть выход второй реакции $\eta_2 = x$, тогда выход третьей реакции $\eta_3 = x$	4
$1.4 \cdot x \cdot x = 0.247$	
X2 = 0.1764	
X = 0.42	

Выход первой реакции $\eta 1 = 0,42 \cdot 2 = 0,84$	2
ν (C10H14) = 1,4/0,84 = 1,667 моль	2
$M(C10H14) = 134 \ \Gamma/моль$	
$m(C10H14) = 1,667 \cdot 134 = 223,3 \Gamma$	
Максимальный балл	10

ЗАДАНИЕ 6 (10 баллов)

Свинец применяется в медицине для изготовления защитных пластин и фартуков от рентгеновского излучения, поскольку не пропускает гамма-лучи. Соединения свинца (оксиды, ацетат) используются медицине качестве антисептиков, противовоспалительных и вяжущих средств в составе пластырей, примочек. Имеются два оксида свинца А и В, в которых массовые доли кислорода относятся как 3:4. Оксид А растворяется в разбавленной азотной кислоте, при этом осадок не образуется, а также растворяется в разбавленной соляной кислоте с образованием осадка. Оксид В растворяется в разбавленной азотной кислоте с образованием осадка и не реагирует с разбавленной соляной кислотой. Оба оксида А и В растворяются в горячем концентрированном растворе щелочи с образованием комплексных солей разного состава. Напишите уравнения пяти реакций.

РЕШЕНИЕ

TEMBIND	
Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	
Оксид A – PbO Оксид B – Pb3O4	2
$PbO + 2HNO3 \rightarrow Pb(NO3)2 + H2O$	
$PbO + 2HC1 \rightarrow PbC12 + H2O$	2
$Pb3O4 + 4HNO3 \rightarrow 2Pb(NO3)2 + PbO2 \downarrow + 2H2O$	2
$PbO + 2NaOH + H2O \rightarrow Na2[Pb(OH)4]$	2
$Pb3O4 + 6NaOH + 4H2O \rightarrow 2Na2[Pb(OH)4] + Na2[Pb(OH)6]$	2
Максимальный балл	10

ЗАДАНИЕ 7 (12 баллов)

Парабены — сложные эфиры пара-гидроксибензойной кислоты, широко используемые в качестве консервантов в офтальмологических растворах, в фармацевтической и пищевой промышленности благодаря антисептическим и фунгицидным свойствам. Напишите уравнения реакций, соответствующих получению метилпарабена (X5), если известно, что в веществе X3 функциональные группы максимально удалены друг от друга.

Фенолят калия
$$\xrightarrow{CO_2 t=150^{\circ}C}$$
 $X_1 \xrightarrow{HCl}$ $X_2 \xleftarrow{H_2SO_4}$ $X_3 \xleftarrow{K_2CO_3(t^{\circ})}$ $X_4 \xleftarrow{KMnO_4}$ 2-метилфенол X_5

Содержание верного ответа и указания по оцениванию (допускаются иные формулировки ответа, не искажающие его смысла)	Баллы
$ \begin{array}{c} COOH \\ COOH \\ COOK \end{array} $	2

ЗАДАНИЕ 8 (12 баллов)

Элемент X, широко используемый в составе конструкционных материалов в ортопедической стоматологии, образует соль X2(SO4)3, в которой массовая доля кислорода составляет 49%. При взаимодействии концентрированного раствора этой соли с концентрированным раствором сульфата калия в осадок выпадают фиолетовые кристаллы двойной соли в виде кристаллогидрата А. В веществе (А) число атомов кислорода в 10 раз больше, чем число атомов атомов серы. При нагревании (А) до 8000С образуется твердый остаток вещества (С) темно-зеленого цвета. Вещество (С) прокалили со смесью хлората калия и карбоната калия, при этом выделился газ (Д). Напишите уравнения реакций и рассчитайте объем газа Д (н.у.), если масса взятого кристаллогидрата А равна 44,9 г.

1 EMERINE	
Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	
$M(X2(SO4)3) = 12 \cdot 16/0,49 = 392 \ \Gamma/моль$	2
Ar(X) = (392 - 3.96)/2 = 52 => X - 3To Cr	
$Cr2(SO4)3 + K2SO4 + 2nH2O \rightarrow 2KCr(SO4)2 \cdot nH2O$	2
8+n = 10.2	
n = 12	
$\nu(KCr(SO4)2\cdot12H2O) = 44,9/499 = 0,09$ моль	2
$4KCr(SO4)2\cdot12H2O \rightarrow 2Cr2O3 + 6SO2 + 3O2 + 2K2SO4 + 48H2O$	2
Cr2O3++ KClO3 + 2K2CO3 → 2K2CrO4 + KCl + 2CO2	2
$\nu(CO2) = 0.09 \text{ моль}$	2
$V(NH3) = 22,4.0,09 = 2,016\pi$	
Максимальный балл	12

ЗАДАНИЕ 9 (12 баллов)

Лекарственные препараты сульфата цинка используются в медицине в качестве противомикробных (антисептических) средств для наружного применения и в зависимости от концентрации оказывают вяжущее, раздражающее или прижигающее действие. При электролизе 370 г раствора сульфата цинка с плотностью 1,06 г/мл и концентрацией соли 1,72 моль/л образовалось 13,6 г смеси газов с плотностью 0,759 г/л (н.у.). К полученному после электролиза раствору добавили 250 г 25,6%-ного раствора гидроксида натрия. Определите молярные концентрации веществ в итоговом растворе, если его плотность 1,04 г/мл.

РЕШЕНИЕ

TEMETITE	
Содержание верного ответа и указания по оцениванию (допускаются иные	Баллы
формулировки ответа, не искажающие его смысла)	
$2ZnSO4 + 2H2O \rightarrow 2Zn + O2 + 2H2SO4$	2
$2H2O \rightarrow 2H2 + O2$	
V(pacтвоpa) = 370/1,06 = 349 мл = 0,349 л	
$v(ZnSO4) = 1,72 \cdot 0,349 = 0,6$ моль	
V(смеси газов) = 13,6 /0,759= 17,92 л	2
v(смеси газов) = 17,92/22,4 = 0,8 моль	
Пусть разложилось: $v(ZnSO4) = x$; $v(H2O) = y$	2
$\int_{0.5x} 0.5x + 1.5y = 0.8$	
$\begin{cases} 16(x+y) + 2y = 13.6 \end{cases}$	
$\int x = 0.4$	
y = 0.4	
ν (ZnSO4) ост. = 0,6 – 0,4 = 0,2 моль	2
$\nu(\text{H2SO4}) = 0.4$ моль	
m(pacтворa) = 370 - 0.4.65 - 13.6 = 330.4 г	
$\nu(\text{NaOH}) = 250.0,256/40 = 1,6 \text{ моль}$	
$H2SO4 + 2NaOH \rightarrow Na2SO4 + 2H2O$	2
$ZnSO4 + 4NaOH \rightarrow Na2SO4 + Na2[Zn(OH)4]$	
$\nu(\text{Na2SO4}) = 0.4 + 0.2 = 0.6 \text{ моль}$	
$\nu(\text{Na2}[\text{Zn}(\text{OH})4]) = 0,2$ моль	
m(pаствора) = 330,4 + 250 = 580,4 г	
V(pacтвоpa) = 580,4/1,04 = 558 мл = 0,558 л	2
C(Na2SO4) = 0,6/0,558 = 1,075 моль/л	
C(Na2[Zn(OH)4]) = 0.2/0.558 = 0.36 моль/л	
Максимальный балл	12

ЗАДАНИЕ 10 (18 баллов)

Хлорид аммония используется в медицине в качестве диуретического средства при метаболическом алкалозе, отеках сердечного происхождения, а также в качестве отхаркивающего средства при заболеваниях легких. Для количественного определения навеску технического (содержащего инертные примеси) хлорида аммония массой 0,500 г растворяют в мерной колбе объемом 100,0 мл. К пробе раствора объемом 10,0 мл избыток раствора формальдегида (метаналя) и индикатор фенолфталеин. Полученный бесцветный раствор титруют раствором гидроксида натрия концентрацией 0,25 моль/л. появления бледно-розовой До окраски потребовалось добавить 3,6 мл раствора щелочи. Напишите уравнения реакций, если известно, что при взаимодействии соли аммония с избытком формальдегида образуется уротропин. Рассчитайте массовую долю хлорида аммония в навеске. Уротропин (Гексаметилентетрамин):

Выберите необходимую для проведения анализа аналитическую посуду и оборудование, назовите их и укажите, для чего данная посуда и оборудование используются.

РЕШЕНИЕ

Элемент ответа	балл
1) Написаны уравнения реакций:	4
$4 \text{ NH4C1} + 6 \text{CH2O} \rightarrow (\text{CH2})6 \text{N4} + 4 \text{ HC1} + 6 \text{ H2O}$	
$HC1 + NaOH \rightarrow NaC1 + H2O$	
2) Рассчитано количество вещества хлорида аммония в аликвоте:	2
ν (NH4Cl) = ν (HCl) = ν (NaOH) = 0,25 · 3,6 = 0,9 ммоль	
3) Рассчитано количество вещества хлорида аммония в растворе:	2
$\nu \text{ (NH4Cl)} = 0.9 \cdot 100.0 / 10.0 = 9 \text{ ммоль}$	
4) Рассчитана масса и массовая доля хлорида аммония:	2
$m \text{ (NH4Cl)} = 9 \cdot 53.5 = 481.5 \text{ M}\Gamma = 0.4815 \Gamma$	
$\omega(\text{NH4Cl}) = 0.4815 \cdot 100/0.5 = 96.3\%$	
3 – мерная колба – для приготовления точного объема раствора	6
анализируемого вещества;	
6 – пипетка Мора – для взятия аликвотной доли анализируемого раствора;	
8 – бюретка – для определения объема титранта;	
9 – аналитические весы – для взятия точной навески анализируемого	
вещества.	
Максимальный балл	18

Материалы заданий заключительного этапа Всероссийской Сеченовской олимпиады школьников по химии 2023г. с ответами на задания, с указанием выставляемых баллов за каждое задание.