Всероссийская Сеченовская олимпиада школьников по химии 2023-2024.

Заключительный этап.

8 класс

Вариант 1

.	T A	1111		1 1	
5 A .		НИ	н.		
<i></i>	-44 B				

Диоксины — это глобальные экотоксиканты, обладающие мощным мутагенным,
иммунодепрессантным, канцерогенным, тератогенным и эмбриотоксическим действием. Они
слабо расщепляются и накапливаются как в организме человека, так и в биосфере планеты,
включая воздух, воду, пищу. Величина летальной дозы для этих веществ достигает 10-16 г на 1 кг
живого веса. Американской армией во время войны во Вьетнаме с 1961 по 1971 годы в рамках
программы по уничтожению растительности «Ranch Hand» в качестве дефолианта применялся
Agent Orange — смесь 2,4-дихлорфеноксиуксусной кислоты (2,4-Д) и 2,4,5-
трихлорфеноксиуксусной кислоты (2,4,5-Т), содержащая примеси полихлорбензодиоксинов. В
результате из-за воздействия диоксинов пострадало значительное число мирных вьетнамцев,
многие на всю жизнь остались инвалидами в результате контакта с Agent Orange. Во Вьетнаме
насчитывается более 4,8 миллионов жертв распыления дефолиантов. Действия американских
войск привели к практически полному уничтожению мангровых лесов (500 тыс.га), поражению
60% (около 1 млн га) джунглей и 30% равнинных лесов. В этих районах из 150 видов птиц
осталось 18, произошло почти полное уничтожение земноводных и насекомых.

В состав диоксиновых реагентов входят вещества состава $C_xH_yCl_zO_{\gamma}$.

Установите формулу вещества, если известно, что в молекуле количество атомов водорода и хлора равны между собой, при этом каждого из них в 2 раза больше атомов кислорода и в 3 раза меньше атомов углерода, а общее количество атомов составляет 22

	7
	4
Максимальный балл	8
Wiakchmajibhbin dajiji	0

ЗАДАНИЕ 2.1.	
Приведите пример двух реакций разложения, в одной из которых молярная	масса формульной
единицы твердого продукта реакции больше молярной массы реагента, а в др	угой образуется
металл и два газа.	
Напишите уравнения вышеуказанных реакций.	
	5
	5
	10
ЗАДАНИЕ 3.1.	
К невсасывающимся антацидным средствам относят препараты, содержащие	е гидроксиды
алюминия и магния. Они нейтрализуют избыточную соляную кислоту желудо	очного сока, а заодно
оказывают защитное действие на слизистую оболочку желудка и помогают ус	скорять заживление
язв и эрозий. Примером таких препаратов может служить Гастрацид и Маало	okc.
Смесь гидроксида магния и гидроксида алюминия общей массой	282г количественн
прореагировала с 3193,75г 12% раствора хлороводородной кислоты. Вычи	слите массовые дол
гидроксидов в исходной смеси.	
	2
	2
	2
	2
	2
Максимальный балл	10

ЗАДАНИЕ 4.1.

Выберите две кислоты, которые различаются по количественному и качественному составу, но характеризуются одинаковой молярной массой. Запишите уравнения химических реакций каждой из выбранных кислот с бромидом калия. Одна реакция должна быть окислительновосстановительной, а другая обменной. Для окислительно-восстановительной реакции приведите баланс.

	5

	5
Максимальный балл	10

ЗАДАНИЕ 5.1.

Сера известна людям с глубокой древности. В практических целях ее стали применять, начиная с 16—17 вв. до н. э. для приготовления красок, косметических средств, отбеливания тканей и в медицине. В медицине Сера используется в качестве лекарственного средства, в сельском хозяйстве - для борьбы с вредителями и болезнями растений, в промышленности применяется в органическом синтезе, в производстве взрывчатых веществ, резины, искусственных волокон, спичек и др. Радиоактивные изотопы Сера используют в медико-биологических исследованиях. Пыль элементарной Сера может представлять собой профессиональную вредность для лиц, работающих в серных рудниках. В организм человека сера поступает с пищей. В процессе обмена веществ она переходит в более окисленное состояние, конечными продуктами этого процесса являются сульфаты, которые в печени обезвреживают токсические продукты метаболизма - фенолы. Из организма сера выводится с мочой и калом.

Напишите химические уравнения согласно схеме. В схеме последовательно чередуются реакция обмена и окислительно-восстановительная реакции. Все вещества содержат серу.

Сероводород \rightarrow А \rightarrow Б \rightarrow В \rightarrow Г \rightarrow Д \rightarrow сероводород

	2
	2
	2
	2
	2
	2
Максимальный балл	12

ЗАДАНИЕ 6.1.

Металл X образует соединения XCO_3 и X_3P_2 . X_3P_2 является действующим веществом многих пестицидов (инсектицидов), используемых для фумигации различной продукции, сырья и помещений. Известно, что значение молярной массы фосфида в 1,5952 раза больше молярной массы карбоната. Установите металл X, а также рассчитайте массу газообразного продукта, который выделится при обработке X_3P_2 массой 26,8 гр избытком концентрированной азотной кислоты.

	2
	4
	4

Максимальный балл	10
ЗАДАНИЕ 7.1.	
Йод — физиологически значимый элемент, участвующий в выработк организме взрослого человека сосредоточено около 20-30 мг йода, находится в щитовидной железе, а около 35% в плазме крови. В х проводили опыты с йодом. Под тягой йод массой 1,27 гр. обработали конкислотой при нагревании. Раствор осторожно выпарили и остаток нагрел получен оксид, способный реагировать с угарным газом. Результатом д образование двух веществ — простого и сложного. Полученное простое перенесли в горячий раствор калия гидроксида. Рассчитайте массу получения получения в торячий раствор калия гидроксида. Рассчитайте массу получения простого и сложного получения в торячий раствор калия гидроксида.	при этом около 30% имической лаборатории центрированной азотной и, в результате чего был анной реакции является вещество количественно
	5
Максимальный балл	10
ЗАДАНИЕ 8.1. Для полного хлорирования 6 г смеси порошков железа и меди потребова сколько может быть получено при взаимодействии 6,32 г. калия перманга Найти массовую долю меди в смеси.	_
	4
	2
	2

	2
Максимальный балл	10
ЗАДАНИЕ 9.1.	
При взаимодействии белого фосфора с горячим раствором кал	вьция гидроксида получен
бесцветный ядовитый газ, который был пропущен через концентрир	рованную кислоту азотную
Раствор упарили и остаток нейтрализовали негашёной известью. По-	лученный осадок отделили
смешали с углем и кремнезёмом и прокалили. Продукт взаимодо	ействия данных реагентов
обладающий свойством светиться в темноте, нагрели с кальці	иевой стружкой. Составьто
уравнения данных реакций.	
	2
	2
	2 2
	2
Максимальный балл	2 2
	2 2 2
ЗАДАНИЕ 10.1.	2 2 2 10
ЗАДАНИЕ 10.1. Металл X, используемый в стоматологии в составе сплавов для по.	2 2 2 10 10 лучения стоматологических
ЗАДАНИЕ 10.1. Металл X, используемый в стоматологии в составе сплавов для по.	2 2 2 10 10 лучения стоматологических сления металла в оксиде +3
ЗАДАНИЕ 10.1. Металл X, используемый в стоматологии в составе сплавов для полротезов массой 20.8 гр. образует оксид массой 30.4 гр. Степень окис Установите металл и составьте уравнения реакций взаимоде	2 2 10 лучения стоматологических сления металла в оксиде +3 йствия металла с очени
ЗАДАНИЕ 10.1. Металл X, используемый в стоматологии в составе сплавов для полротезов массой 20.8 гр. образует оксид массой 30.4 гр. Степень окис Установите металл и составьте уравнения реакций взаимоде	2 2 10 лучения стоматологических сления металла в оксиде +3 йствия металла с очени
ЗАДАНИЕ 10.1. Металл X, используемый в стоматологии в составе сплавов для полротезов массой 20.8 гр. образует оксид массой 30.4 гр. Степень окис	2 2 10 лучения стоматологических сления металла в оксиде +3 йствия металла с очениродной

Максимальный балл

Всероссийская Сеченовская олимпиада школьников по химии 2023-2024.

Заключительный этап.

Ответы на залания.

8 класс

Вариант 2

ЗАДАНИЕ 1.2.

Диоксины — это глобальные экотоксиканты, обладающие мощным мутагенным, иммунодепрессантным, канцерогенным, тератогенным и эмбриотоксическим действием. Они слабо расщепляются и накапливаются как в организме человека, так и в биосфере планеты, включая воздух, воду, пищу. Величина летальной дозы для этих веществ достигает 10–16 г на 1 кг живого веса. Американской армией во время войны во Вьетнаме с 1961 по 1971 годы в рамках программы по уничтожению растительности «Ranch Hand» в качестве дефолианта применялся Agent Orange — смесь 2,4-дихлорфеноксиуксусной кислоты (2,4-Д) и 2,4,5-трихлорфеноксиуксусной кислоты (2,4,5-Т), содержащая примеси полихлорбензодиоксинов. В результате из-за воздействия диоксинов пострадало значительное число мирных вьетнамцев, многие на всю жизнь остались инвалидами в результате контакта с Agent Orange. Во Вьетнаме насчитывается более 4,8 миллионов жертв распыления дефолиантов. Действия американских войск привели к практически полному уничтожению мангровых лесов (500 тыс.га), поражению 60% (около 1 млн га) джунглей и 30% равнинных лесов. В этих районах из 150 видов птиц осталось 18, произошло почти полное уничтожение земноводных и насекомых.

В состав диоксиновых реагентов входят вещества состава $C_xH_vCl_zO_v$

Установите формулу вещества, если известно, что в молекуле количество атомов кислорода в 6 раз меньше количества атомов углерода и в 4 раза меньше суммы атомов водорода и хлора, числа последних равны между собой. Суммарное количество атомов в молекуле 22.

	4
	4

Максимальный балл	3	3
ЗАДАНИЕ 2.2.	T.	<u> </u>
Приведите пример двух реакций разложения, в результате которых обязател	тьно образу	отся как
минимум два газообразных продукта (н.у.) и не образуется твердого остатка.	Приведите	примеры
соответствующих реакций.		
	5	
	5	
	10)
ЗАДАНИЕ 3.2.		
К невсасывающимся антацидным средствам относят препараты, содер	жащие гид	роксиды
алюминия и магния. Они нейтрализуют избыточную соляную кислоту желудо	чного сока,	а заодно
оказывают защитное действие на слизистую оболочку желудка и помогают у	ускорять зах	кивление
язв и эрозий. Примером таких препаратов может служить Гастрацид и Маалок	c.	
Смесь гидроксида магния и гидроксида алюминия общей массой 2	262г колич	ественно
прореагировала с 2311,67г 15% раствора хлороводородной кислоты. Вычис	лите массов	вые доли
гидроксидов в исходной смеси.		
	2	
	2	
	2	
	2	
	2	
Максимальный балл	10	
ЗАДАНИЕ 4.2.		
Выберите две кислоты, которые различаются по количественному и качест	венному сос	ставу, но
характеризуются одинаковой молярной массой. Запишите уравнения химичес		
из выбранных кислот с иодидом натрия. Одна реакция должна б	ыть окисл	ительно-
восстановительной, а другая обменной. Для окислительно-восстановительной	й реакции п	риведите
баланс.		
	5]
	5	1

Максимальный балл	10	

ЗАДАНИЕ 5.2.

Сера известна людям с глубокой древности. В практических целях ее стали применять начиная с 16—17 вв. до н. э. для приготовления красок, косметических средств, отбеливания тканей и в медицине.

В медицине Сера используется в качестве лекарственного средства, в сельском хозяйстве - для борьбы с вредителями и болезнями растений, в промышленности применяется в органическом синтезе, в производстве взрывчатых веществ, резины, искусственных волокон, спичек и др. Радиоактивные изотопы Сера используют в медико-биологических исследованиях. Пыль элементарной Сера может представлять собой профессиональную вредность для лиц, работающих в серных рудниках.

В организм человека сера поступает с пищей. В процессе обмена веществ она переходит в более окисленное состояние, конечными продуктами этого процесса являются сульфаты, которые в печени обезвреживают токсические продукты метаболизма - фенолы. Из организма сера выводится с мочой и калом.

Напишите химические уравнения согласно схеме. В схеме последовательно чередуются реакция обмена и окислительно-восстановительная реакции. Все вещества содержат серу.

Оксид серы (IV) \rightarrow A \rightarrow Б \rightarrow В \rightarrow Г \rightarrow Д \rightarrow Оксид серы (IV)

	2
	2
	2
	2
	2
	2
Максимальный балл	12

ЗАДАНИЕ 6.2.

Металл X образует соединения XSO_4 и X_3P_2 . X_3P_2 является действующим веществом многих пестицидов (инсектицидов), используемых для фумигации различной продукции, сырья и помещений. Известно, что значение молярной массы фосфида в 1,1167 раза больше молярной массы сульфата. Установите металл X, а также рассчитайте массу газообразного продукта, который выделится при обработке X_3P_2 массой 13,4 гр. избытком концентрированной азотной кислоты.

2
4
4

Максимальный балл	10			
ЗАДАНИЕ 7.2.				
Йод – физиологически значимый элемент, участвующий в выработке многих гормонов. В				
организме взрослого человека сосредоточено около 20-30 мг йода, при этом около 30%				
находится в щитовидной железе, а около 35% в плазме крови. В химической лаборатории				
проводили опыты с йодом. Под тягой йод массой 2,54 гр. обработали концентрированной азотной				
кислотой при нагревании. Раствор осторожно выпарили и остаток нагрели	и, в результате чего был			
получен оксид, способный реагировать с угарным газом. Результатом данной реакции является				
образование двух веществ- простого и сложного. Полученное простое вещество количественно				
перенесли в горячий раствор натрия гидроксида. Рассчитайте массу полученных солей.				
	5			
	5			
Максимальный балл	10			
ЗАДАНИЕ 8.2.				
Для полного хлорирования 3 г смеси порошков железа и меди потребовало	сь столько же хлора,			
сколько может быть получено при взаимодействии 3,16 г. калия перманган	ата с хлороводородом.			
Найти массовую долю меди в смеси.				
	4			
	2			
	2			
	2			

Максимальный балл	10				
ЗАДАНИЕ 9.2.					
При взаимодействии фосфида кальция с раствором кислоты хлороводородной получен					
бесцветный ядовитый газ, который был пропущен через концентрированную кислоту азотную.					
Раствор упарили и остаток нейтрализовали негашёной известью. Полученный осадок отделили,					
смешали с углем и кремнезёмом и прокалили. Газообразный продукт взаимодействия данных					
реагентов, нагрели с оксидом кальция в присутствии воды. Составьте уравнения данных реакций.					
	2				
	2				
	2				
	2				
	2				
Максимальный балл	10				
ЗАДАНИЕ 10.2.					
Металл X, используемый в стоматологии для получения припоев стомато	логических протезов				
массой 3 гр. Сожгли, получив его оксид массой 5,67 гр. Степень окисления металла в оксиде +3.					
Установите металл и составьте уравнения реакций взаимодействия металла при сильном					
нагревании с концентрированной серной кислотой, с разбавленной серной кислотой и хлором.					
4					
2					
2					
2					
Максимальный балл 1	0				