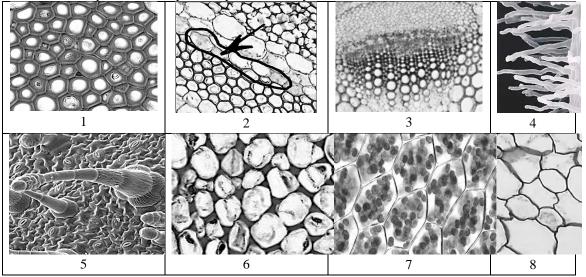
Материалы заданий заключительного этапа Всероссийской Сеченовской олимпиады школьников по биологии 2023г. с ответами на задания, с указанием выставляемых

баллов за каждое задание.

10 класс

Вариант 1

Белок Q состоит из 526 аминокислот. Используя одно из свойств генетического кода и знания строения β -спирали ДНК решите задачу, учитывая, что, число нуклеотидов, входящих в состав восьми интронов гена отвечающего за синтез белка Q составляет 174 (цифра взята произвольно


для решения задачи), число нуклеотидов, входящих в состав участков ДНК, регулирующих процесс синтеза белка 158 (цифра взята произвольно для решения задачи). Результаты округлить

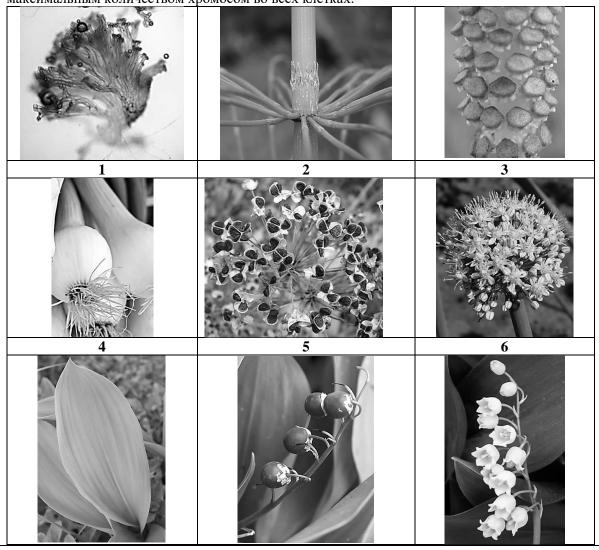
до целого числа по правилу математики.

No	Элементы задачи	ответ	балл
1	Определите количество витков β-спирали ДНК,	176	2 балла
	в которой расположен ген, отвечающий за		
	синтез первичной структуры белка Q		
2	Определите длину гена (в нм) в конформации	597	2 балла
	β-спирали ДНК в нанометрах, отвечающего за		
	синтез белка Q		
3	Определите суммарную длину «экзонной»	538	2 балла
	части гена (в нм) в конформации β-спирали		
	ДНК в нанометрах, отвечающего за синтез		
	белка Q		
4	Определите суммарную длину «интронной»	59	2 балла
	части гена (в нм) в конформации β-спирали		
	ДНК в нанометрах, отвечающего за синтез		
	белка Q		
5	Определите суммарное число участков РНК,	9	2 балла
	объединяемых в процессе сплайсинга		

2.1 10 баллов

Внимательно изучите иллюстрации и решите задачу

Элемент задачи	Ответ	Балл
Из предложенного набора вам нужно	1	2
составить орган растения, используя	2	
максимальное количество тканей. Какие	3	
ткани вам понадобятся?	5	
	6	
	7	
	8	
	2 балла, если присутствуют все	
	позиции ответа.	
	1 балл, если не хватает 1 позиции,	
	при этом не должно быть	
	ошибочной позиции 4.	
Определите жизненную форму и орган	Трава – 1 балл	2
растения, для которого характерен такой	Стебель/стебель двудольного	

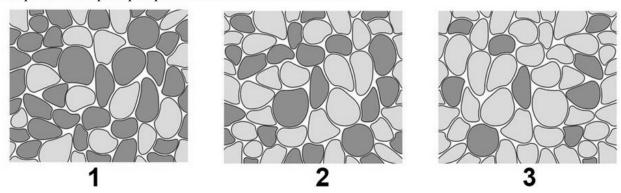

набор тканей?	растения – 1 балл	
К какому отделу и классу принадлежит растение?	Отдел Покрытосеменные— 1 балл Класс Двудольные— 1 балл	2
Среди представленных тканей выберите механические	1— 1 балл 6— 1 балл	2
Расположите ткани в виде последовательности от периферии к центру	5-▶6-▶7-▶2-▶1-▶3-▶8 2 балла, если присутствуют все позиции ответа.	2
	1 балл, если одна ошибка, при этом не должно быть ошибочной позиции 4.	

3.1 9 баллов

Томас Морган получил Нобелевскую премию по физиологии и медицине 1933 г. «За важные открытия, связанные с ролью хромосом в наследственности». Открытие Моргана дало мощный толчок развитию генетики, достижениями которой мы пользуемся ежедневно.

представитель	кариотип
хвощ	216
лук	16
ландыш	38

Перед вами девять объектов. Проведите анализ по суммарному количеству хромосом в клетках объектов. Для облегчения анализа считайте количество клеток в объектах одинаковым. Расположите объекты в последовательный ряд. Сначала объекты с наименьшим суммарным количеством хромосом во всех клетках, затем средним количеством и в завершении максимальным количеством хромосом во всех клетках.



7		8	9	
№ объекта	Порядковы	й номер в последовательности	Балл	
1	7		1 балл	
2	9		1 балл	
3	8		1 балл	
4	2		1 балл	
5	3		1 балл	
6	1		1 балл	
7	5		1 балл	
8	6		1 балл	
9	4		1 балл	

4.1 10 баллов

Скелетные мышцы могут расти тремя способами: внутриутробно новые клетки образуются, а в течение жизни они могут вытягиваться или утолщаться. Рост мышцы в длину зависит от включения новых миобластов, а утолщение, как за счет новых миобластов, так и за счет увеличения саркоплазмы и числа миофибрилл.

На рисунке схематично показаны поперечные срезы мышц трёх спортсменов. У спортсмена 1 преобладают красные мышечные волокна (тёмно-серые на рисунке), у спортсмена 3 — белые, у спортсмена 2 примерно равное количество этих волокон.

Проанализируйте иллюстрации и решите задачу.

Элемент задачи	Ответ	Балл
У какого спортсмена мышечная	Спортсмен 1. – 1 балл	2 балла
ткань содержит больше миоглобина и	Чем больше миоглобина, тем мышечная ткань	
почему вы так решили?	краснее, так как миоглобин содержит Fe 2+ - 1	
-	балл	
Какой из спортсменов с наибольшей	Спортсмен 3. – 1 балл	2 балла
скоростью расходует энергию в	У этого спортсмена преобладают белые	
мышцах и почему?	волокна, они большего диаметра. Быстрый	
	расход и быстрое восстановление молекул АТФ	
	может обеспечить только процесс гликолиза	
	(анаэробный), потому что он протекает в	
	саркоплазме клеток, и не требует доставки	
	кислорода митохондриям. – 1 балл	
За счет каких структур разрастаются	За счет размера и плотности	2 балла
красные (тёмно-серые на рисунке)	миофибрилл/мышечных волокон	
мышечные волокна у спортсмена 1		
С какими мышечными нагрузками	Продолжительная и не интенсивная работа:	2 балла
лучше справляется спортсмен 1?	стайерские (длинные) дистанции в плавании и	
	беге, ходьба, занятия с легкими весами в	
	умеренном темпе	
Как необходимо проводить	Нужно проводить аэробные тренировки.	2 балла
тренировку, чтобы количество	Длительные нагрузки 20-25% от максимальной	
красных мышечных волокон (тёмно-	силы.	

серые на рисунке) увеличилось?	Небольшие веса с большим количеством	
	повторений, например пауэрлифтинг,	
	армрестлинг	

5.1 10 баллов

Все изученные виды малярийных плазмодиев имеют кариотип 14 хромосом и по одной митохондрии.

Предположим, что в процессе эндоэритроцитарной шизогонии у Plasmodium malariae образуется 10 ядер. Исходное количество мерозоитов 10. У виртуального пациента прошло четыре цикла

эндоэритроцитарной шизогонии. Решите задачу.

Элемент задачи	Ответ	Балл
Определите суммарное число ядер во всех зрелых	100 000	2
шизонтах (трофозиодах) после четырёх циклов		
шизогонии		
Определите суммарное число центромер во всех	700 000	2
ядрах зрелых шизонтов (трофозиодов) после		
четырёх циклов шизогонии, если учесть, что		
хромосомы однохроматидные		
Определите суммарное число теломер во всех	2 800 000	2
ядрах зрелых шизонтов (трофозиодов) после		
четырёх циклов шизогонии, если учесть, что		
хромосомы двухроматидные		
Определите суммарное число хромосом в зиготе	14	2
Plasmodium malariae		
Определите суммарное количество теломер и	70	2
центромер в зиготе Plasmodium malariae, учитывая,		
что хромосомы двухроматидные		

6.1	10 баллов

На п	иллюстрации	резуль	таты э	ксперимента	ПО	Α
секвени	рованию Ф	редерика	Сенгера.	Проанализи	руйте	
результа	аты эксперим	ента и реш	ите задачу.			-
						_

АТЦГ

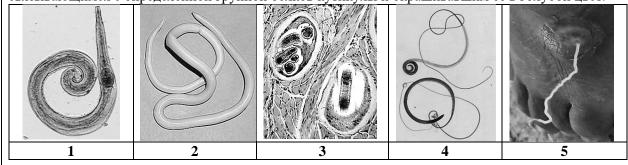
Элемент задачи	Ответ	Балл
Секвернируемая	3' ГЦТ ГТГ ТЦА 5'	2 балла
последовательность в направлении		
3' - 5'		
Определите общее количество	8	2 балла
фосфодиэфирных связей в		
секвенированной		
последовательности		
Определите суммарное количество	18	2 балла
элементов сахарно-фосфатного		
остова в секвенированной		
последовательности		
Определите суммарное количество	5	2 балла
пиримидиновых нуклеотидов в		
секвенируемой последовательности		
Определите суммарное количество	4	2 балла
пуриновых нуклеотидов в		
секвенируемой последовательности		

7.1 11 баллов

Вы – научный сотрудник лаборатории по поиску эффективных лекарственных препаратов для человека. Лаборатория разделена на рабочие группы, каждая из которых решает свои задачи.

В виварии лаборатории для исследований есть модельные животные:

макака резус - 5 экз., курица – 15 экз., рыбка Данио – 20 экз., ящерица – 5 экз.


Проанализируйте предложенный список животных и решите задачи.

Элемент задачи	Ответ	Балл
Определите общее количество нефронов в	4 004 000	5 баллов
почках всех половозрелых животных в		
виварии лаборатории, если в качестве		
исходных данных считать, что в		
пронефросе/головной почке их 10, в		
мезонефросе/туловищной почке их 100, в		
метанефросе/тазовой почке их 100 000		
Определите общее количество камер сердца	85	2 балла
у животных вивария, в которых можно		
исследовать химические параметры		
венозной крови		
Определите общее количество сосудов,	25	2 балла
отходящих непосредственно от сердца у всех		
животных вивария, в которых можно		
исследовать химические параметры		
артериальной крови		
Определите общее количество косточек	70	2 балла
среднего уха, всех животных вивария		
лаборатории		

8.1 10 баллов

Лауреатами Нобелевской премии в области физиологии и медицины 2015 года стали Уильям Кэмпбелл и Сатоси Амура за получение препаратов для лечения **гельминтозов**, вызываемых круглыми червями.

Вы сотрудник научной группы. Объекты исследования группы представлены в таблице. Все объекты, представленые в таблице, должны быть обработаны флуорофором, специфично связывающимся с определенной группой белков кутикулы и окрашивавшим её в голубой цвет.

Вы исследуете объект № 1.

Перед вами несколько задач. Решите их!

	пи песколько зада і: т сшите их:		
No	Задача	Ответ	Балл
задачи			
1	Назовите паразита	Острица	2
2	Какой способ введения флуорофора в	Пероральное введение/через рот	2
	организм хозяина/-окончательного		
	хозяина вы выберете?		
3	Регулярные результаты исследований в	Самцы и самки локализованы в	3
ĺ	течение месяца, проводимые по графику	отделах толстой кишки, самки	

	с 14.00 до 14.30 дают только одно место локализации паразита: отделы толстой кишки. Объясните почему?	выползают в область ануса ночью, когда исследования не проводят.	
4	Через месяц исследований возможность визуализации объекта прекратилась. Другие методы исследования подтверждают наличие объекта в организме хозяина. Объясните почему?	Период жизни объекта составляет один месяц. Особи, кутикула которых визуализировалась флуорофором погибли и вывелись из организма. В результате самозаражения или повторного заражения в организме появились новые объекты, кутикула которых не связана с флуорофором и поэтому не видна.	3

9.1 10 баллов

Внимательно изучите иллюстрации и решите задачу.

Вы – исследователь-миколог. При изучении объекта вами были получены фотографии налета, образовавшегося на хлебе, оставленном в целлофановом пакете. Ваша задача- идентифицировать

объект, изучив его согласно алгоритму.

Элемент задачи	Ответ	Балл
Выберите фотографии, на которых	6	2
изображены диплоидные стадии развития		
объекта		
Выберите гаплоидные стадии объекта	1	2
	2	
	3	
	4	
	5	
	7	
	8	
	2 балла, если все позиции верные,	
	если 1 ошибка 1 балл	
Расположите фотографии в соответствии с	1-▶4-▶3-▶7-▶6-▶8-▶5-▶2 или	2
циклом развития объекта, начиная с	1-▶5-▶4-▶3-▶7-▶6-▶8-▶5-▶2	
образования споры бесполого размножения		
	2 балла, если все позиции верные,	
	если нарушена последовательность	
	в двух позиций рядом - 1 балл	

Определите, на каких фотографиях	1	2
изображены спорангии	8	
Определите таксономическую	Отдел Зигомицеты – 1балл	2
принадлежность объекта (отдел, род)	Род Мукор – 1 балл	

10.1 10 баллов

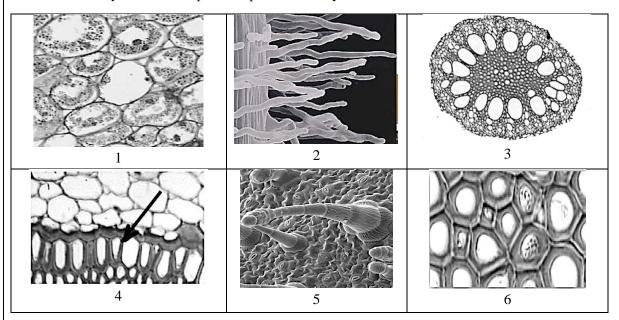
В 1936 году Отто Лёви стал лауреатом Нобелевской премии за открытие химической природы передачи сигнала от одного нейрона к другому. В его лаборатории провели следующий опыт: изолировали два бьющихся сердца лягушек, в одном из них оставили блуждающий нерв, в другом удалили. Оба сердца поместили в сосуды с физиологическим раствором, не влияющим на частоту сердечных сокращений. Далее электрическим током возбуждали нерв, частота сокращений сердца изменялась. Через некоторое время раствор из этого сосуда, где находилось сердце с блуждающим нервом, переносили в другой сосуд, где сокращалось сердце без нерва, частота сокращений сердца также изменялась. По результатам экспериментов Лёви сделал вывод, что при возбуждении нерва выделяется некое вещество, которое и в растворе сохраняет своё действие.

Элемент задачи	Ответ	Балл
Что происходило с сердцем донора при	Сердечная деятельность ослабевала и	2 балла
раздражении блуждающего нерва?	прекращалась	
Какое химическое вещество отвечает	ацетилхолин	2 балла
за передачу сигнала от блуждающего		
нерва?		
Назовите группу химических веществ,	медиатор/нейромедиатор	2 балла
передающих нервный импульс от		
одной клетки к другой или к рабочему		
органу?		
Где у человека расположены ядра	продолговатый мозг	2 балла
блуждающего нерва?		
Выберите органы, которые	123456789 (все)	2 балла
иннервируются блуждающим нервом:	Правильный ответ только при наличии всех	
1. Диафрагма 2. Сердце 3. Глотка 4.	цифр	
Желудок 5. Тонкий кишечник 6.		
Толстый кишечник 7. Поджелудочная		
железа 8. Печень 9. Селезёнка		

10 класс

Вариант 2

1.2	10 баллов


Белок Z состоит из 116 аминокислот. Используя одно из свойств генетического кода и знания строения β-спирали ДНК решите задачу, учитывая, что, число нуклеотидов, входящих в состав пяти интронов гена отвечающего за синтез белка Z составляет 209 (цифра взята произвольно для решения задачи), число нуклеотидов, входящих в состав участков ДНК, регулирующих процесс синтеза белка 206 (цифра взята произвольно для решения задачи). Результаты округлить до целого числа по правилу математики.

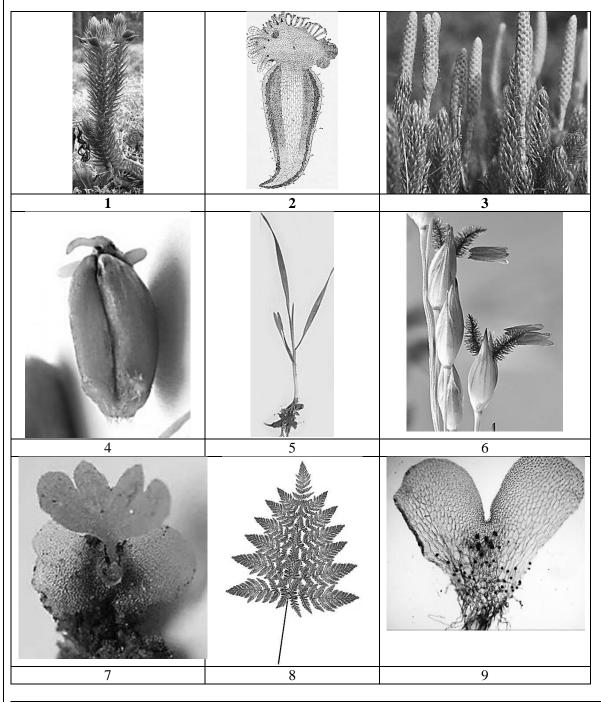
Элемент задачи	ответ	балл
Определите количество витков участка β-спирали	56	2 балла
ДНК, в которой расположен ген, отвечающий за		
синтез первичной структуры белка Z		
Определите длину гена (в нм) в конформации	190	2 балла
β-спирали ДНК, отвечающего за синтез белка Z		
Определите суммарную длину «экзонной» части	119	2 балла

гена (в нм) в конформации β-спирали ДНК, отвечающего за синтез белка Z		
Определите суммарную длину «интронной» части гена (в нм) в конформации β-спирали ДНК, отвечающего за синтез белка Z	71	2 балла
Определите суммарное число участков РНК, объединяемых в процессе сплайсинга	6	2 балла

2.2 10 баллов

Внимательно изучите иллюстрации и решите задачу.

Элемент задачи	Ответ	Балл
Из предложенного набора вам нужно	1	2
составить орган растения, используя	2	
максимальное количество тканей. Какие	3	
ткани вам понадобятся?	4	
	6	
	2 балла, если присутствуют все	
	позиции ответа. 1 балл, если не	
	хватает 1 позиции, при этом не	
	должно быть ошибочной позиции 5.	
Определите жизненную форму и орган	Трава – 1 балл	2
растения, для которого характерен такой	Корень/Корень первичного строения –	
набор тканей?	1 балл	
К какому отделу и классу принадлежит	Отдел Покрытосеменные – 1 балл	2
растение?	Класс Однодольные – 1 балл	
Среди представленных тканей выберите	2 – 1 балл	2
покровные	5 – 1 балл	
Расположите ткани в виде	3-▶4-▶1-▶6-▶2	2
последовательности от центра к	2 балла, если присутствуют все	
периферии	позиции ответа.	
	1 балл, если одна ошибка, при этом не	
	должно быть ошибочной позиции 5.	

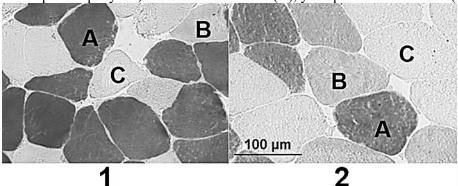

3.2 10 баллов

Томас Морган получил Нобелевскую премию по физиологии и медицине 1933 г. «За важные

открытия, связанные с ролью хромосом в наследственности». Открытие Моргана дало мощный толчок развитию генетики, достижениями которой мы пользуемся ежедневно.

представитель	кариотип
папоротник	52
плаун	38
пшеница	42

Перед вами девять объектов. Проведите анализ по суммарному количеству хромосом в клетках объектов. Для облегчения анализа считайте количество клеток в объектах одинаковым. Расположите объекты в последовательный ряд. Сначала объекты с наименьшим суммарным количеством хромосом во всех клетках, затем средним количеством и в завершении максимальным количеством хромосом во всех клетках.


№ объекта	Порядковый номер в последовательности	Балл
1	5	1 балл
2	1	1 балл

3	3	1 балл
4	9	1 балл
5	7	1 балл
6	4	1 балл
7	6	1 балл
8	8	1 балл
9	2	1 балл

4.2 10 баллов

Новые клетки скелетных мышц образуются внутриутробно, а в течение жизни они могут вытягиваться или утолщаться. Рост мышцы в длину зависит от включения новых миобластов, а утолщение, как за счет новых миобластов, так и за счет увеличения саркоплазмы и числа миофибрилл.

На рисунке показаны поперечные срезы мышц двух спортсменов. У спортсмена 1 преобладают красные (тёмно-серые на рисунке) мышечные волокна (А), у спортсмена 2 – белые (С).

Проанализируйте иллюстрации и решите задачу.

Элемент задачи	Ответ	Балл
У какого спортсмена	Спортсмен 1 – 1 балл	2 балла
мышечная ткань	Чем больше миоглобина, тем мышечная ткань	
содержит больше	краснее, так как миоглобин содержит Fe 2+ - 1	
миоглобина и	балл	
почему?		
Какой из спортсменов	Спортсмен 1. – 1 балл	2 балла
с наименьшей	Преобладают медленные или медленно-	
скоростью расходует	сокращающиеся мышечные волокна	
энергию в мышцах и	(красные/тёмно-серые), в которых поступление	
почему?	АТФ происходит медленно из митохондрий при	
	аэробном окислении, поэтому в клетках большое	
	количество митохондрий – 1 балл	
За счет каких	за счет саркоплазмы/цитоплазмы	2 балла
структур		
разрастаются белые		
мышечные волокна у		
спортсмена 2		
С какими	Продолжительная и не интенсивная работа:	2 балла
мышечными	стайерские (длинные) дистанции в плавании и	
нагрузками лучше	беге, ходьба, занятия с легкими весами в	
справляется	умеренном темпе	
спортсмен 1?		
Как необходимо	Нужно проводить анаэробные тренировки.	2 балла
проводить	Нагрузки от 25-30% максимальной силы,	
тренировку, чтобы	большие веса с малым количеством повторений,	
количество белых	например бодибилдинг	
мышечных волокон		
увеличилось?		

5.2 10 баллов

Все изученные виды малярийных плазмодиев имеют по 14 хромосом и по одной митохондрии. Предположим, что в процессе эндоэритроцитарной шизогонии у Plasmodium vivax образуется 12 ядер. Исходное количество мерозоитов 10. У виртуального пациента прошло три цикла эндоэритроцитарной шизогонии. Решите задачу.

Элемент задачи	Ответ	Балл
Определите суммарное число ядер во всех зрелых	17 280	2
шизонтах (трофозиодах) трёх циклов шизогонии		
Определите суммарное число центромер во всех	120 960	2
ядрах зрелых шизонтов (трофозиодов) трёх		
циклов шизогонии, если учесть, что хромосомы		
однохроматидные		
Определите суммарное число теломер во всех	483 840	2
ядрах зрелых шизонтов (трофозиодов) трёх		
циклов шизогонии, если учесть, что хромосомы		
двухроматидные		
Определите суммарное число хромосом в зиготе	14	2
Plasmodium vivax		
Определите суммарное количество теломер и	42	2
центромер в зиготе Plasmodium vivax, учитывая,		
что хромосомы однохроматидные		

10 баллов		
тюстрации	результаты эксперимента по	АТЦГ
ованию Фре	дерика Сенгера. Проанализируйте	
ы экспериме	нта и решите задачу.	
		– _
		_ _
		_
		—
	пострации рванию Фре	

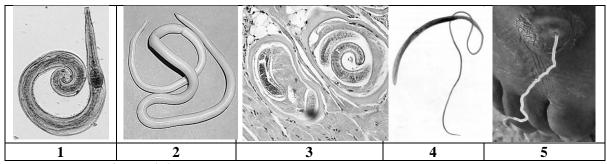
Элемент задачи	Ответ	Балл
Секвернируемая последовательность в направлении 3' - 5'	3' ЦАЦ АГЦ АТЦ 5'	2 балла
Определите общее количество фосфодиэфирных связей в секвенированной последовательности	8	2 балла
Определите суммарное количество моносахаридов-пентоз в секвенированной последовательности	9	2 балла
Определите суммарное количество пиримидиновых нуклеотидов в секвенируемой последовательности	5	2 балла
Определите суммарное количество пуриновых нуклеотидов в секвенируемой последовательности	4	2 балла

7.2 11 баллов

Вы — научный сотрудник лаборатории по поиску эффективных лекарственных препаратов для человека. Лаборатория разделена на рабочие группы, каждая из которых решает свои задачи.

В виварии лаборатории для исследований есть модельные животные: минипиг (карликовая свинья) – 5 экз., кролик породы Шиншилла – 20 экз., прыткая

ящерица – 15 экз, травяная лягушка – 40 экз.


Проанализируйте предложенный список животных и решите задачи.

Ответ	Балл
8 008 000	5 баллов
105	2 балла
40	2 балла
260	2 балла
	8 008 000 105

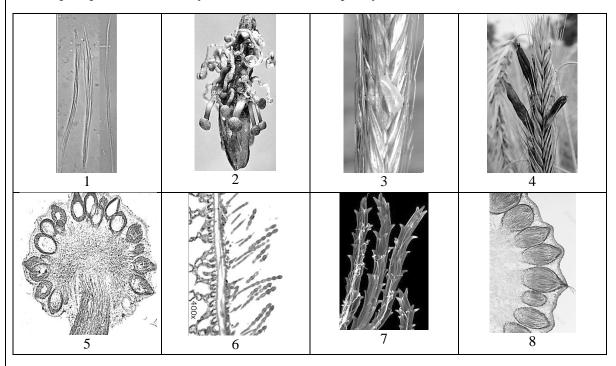
8.2 10 баллов

Лауреатами Нобелевской премии в области физиологии и медицины 2015 года стали Уильям Кэмпбелл и Сатоси Амура за получение препаратов для лечения **гельминтозов**, вызываемых круглыми червями.

Вы сотрудник научной группы. Объекты исследования группы представлены в таблице. Все объекты, представленные в таблице, должны быть обработаны флюорофором, специфично связывающимся с определенной группой белков кутикулы и окрашивавшим её в голубой цвет.

Вы исследуете объект № 2.

Перед вами несколько задач. Решите их!


№	Задача	Ответ	Балл
задачи			
1	Назовите паразита	Аскарида	2
2	Какой способ введения флуорофора вы выберете, чтобы выявить половозрелые особи?	Пероральное введение/через рот	2
3	Регулярные результаты исследований в течение месяца, проводимые по графику с 14.00 до 14.30 дают только одно место локализации паразита:	Самцы и самки локализованы в отделах тонкой кишки. Личиночные стадии флуорофором не окрашены и выявляться не	3

	отделы тонкой кишки. Объясните почему?	будут.		
4	После выявления половозрелых стадий паразита хозяину ввели флуорофор, но новых мест локализации паразита не обнаружили. Объясните почему?	Половозрелые стадии паразитируют только в кишечнике, не мигрируют.	3	

9.2 10 баллов

Внимательно изучите иллюстрации и решите задачу.

Вы – исследователь-миколог. При изучении объекта вами были получены фотографии налета, образовавшегося на хлебе, оставленном в целлофановом пакете. Ваша задача-идентифицировать объект, изучив его согласно алгоритму.

Элемент задачи	Ответ	Балл
Назовите стадию развития объекта на	строма	2
фотографии 5		
Выберите гаплоидные стадии объекта	1	2
	2	
	3	
	4	
	5	
	6	
	7	
	8	
	2 балла, если присутствуют все	
	позиции ответа. 1 балл, если не	
	хватает 1 позиции.	
Расположите фотографии в соответствии с	3-▶6-▶4-▶2-▶5-▶8-▶1-▶7	2
циклом развития объекта, начиная с		
образования споры бесполого	2 балла, если присутствуют все	
размножения	позиции ответа. 1 балл, если две	
	позиции рядом в другой	

		последовательности.	
Какие органеллы можно клетке объекта?	обнаружить в	1 2	2
 Ядро ЭПС Комплекс Гольджи Хлоропласты Лейкопласты Клеточный центр 		3 6 Считать правильным и присутствие и отсутствие этой позиции	
Определите та принадлежность объекта (о	аксономическую отдел, род)	Отдел Аскомицеты – 1 балл Род Спорынья – 1 балл	2

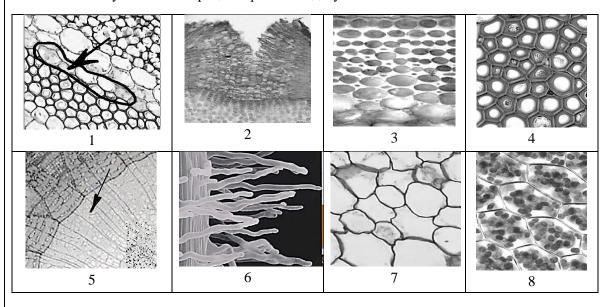
10.2 10 баллов

В 1936 году Отто Лёви стал лауреатом Нобелевской премии за открытие химической природы передачи сигнала от одного нейрона к другому. В его лаборатории провели следующий опыт: изолировали два быющихся сердца лягушек, в одном из них оставили блуждающий нерв, в другом удалили. Оба сердца поместили в сосуды с физиологическим раствором, не влияющим на частоту сердечных сокращений. Далее электрическим током возбуждали нерв, частота сокращений сердца изменялась. Через некоторое время раствор из этого сосуда, где находилось сердце с блуждающим нервом, переносили в другой сосуд, где сокращалось сердце без нерва, частота сокращений сердца также изменялась. По результатам экспериментов Лёви сделал вывод, что при возбуждении нерва выделяется некое вещество, которое и в растворе сохраняет своё действие.

Элемент задачи	Ответ	Балл
Какое вещество влияло на работу	ацетилхолин	2 балла
сердца в эксперименте?		
Как изменяется у лягушки и у	брадикардия	2 балла
человека работа сердца при		
раздражении блуждающего нерва?		
Как изменяется работа сердца при	тахикардия	2 балла
перерезке только блуждающего		
нерва и сохранении остальных?		
Где начинается блуждающий нерв?	продолговатый мозг	2 балла
Выберите органы, которые	123456789 (все)	2 балла
иннервируются блуждающим	Правильный ответ только при наличии	
нервом:	всех цифр	
1. Мягкое небо 2. Язык 3. Глотка 4.		
Пищевод 5. Наружный слуховой		
проход 6. Барабанная перепонка 7.		
Поджелудочная железа 8. Печень 9.		
Твердая мозговая оболочка		

10 класс

Вариант 3


1.3 10 баллов

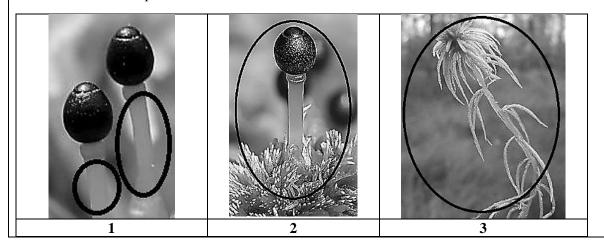
Белок W состоит из 217 аминокислот. Используя одно из свойств генетического кода и знания строения β-спирали ДНК решите задачу, учитывая, что, число нуклеотидов, входящих в состав девяти интронов гена отвечающего за синтез белка W составляет 307 (цифра взята произвольно для решения задачи), число нуклеотидов, входящих в состав участков ДНК, регулирующих процесс синтеза белка 415 (цифра взята произвольно для решения задачи). Результаты округлить до целого числа по правилу математики.

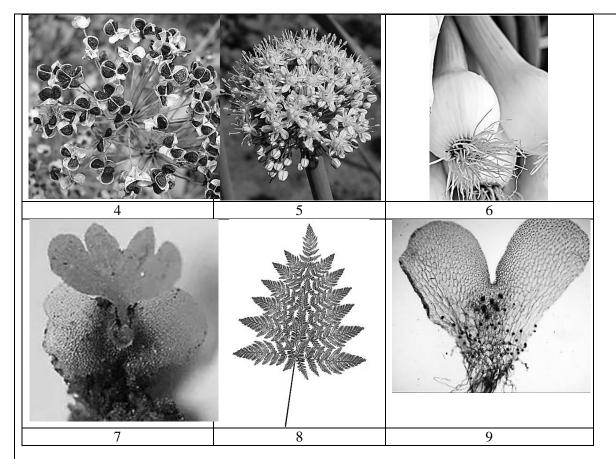
езультиты округинть до целого тиема по правыту жатематики.				
Элемент задачи	ответ	балл		
Определите количество витков участка β-	96	2 балла		
спирали ДНК, в которой расположен ген,				
отвечающий за синтез первичной				
структуры белка W				
Определите длину гена (в нм) в	327	2 балла		
конформации β-спирали ДНК, отвечающего				
за синтез белка W				
Определите суммарную длину «экзонной»	222	2 балла		
части гена (в нм) в конформации β-спирали				
ДНК, отвечающего за синтез белка W				
Определите суммарную длину «интронной»	104	2 балла		
части гена (в нм) в конформации β-спирали				
ДНК, отвечающего за синтез белка W				
Определите суммарное число участков	10	2 балла		
РНК, объединяемых в процессе сплайсинга				

2.3 10 баллов

Внимательно изучите иллюстрации и решите задачу.

Элемент задачи	Ответ	Балл
Из предложенного набора вам нужно	1	2
составить орган растения, используя	2	
максимальное количество тканей.	3	
Какие ткани вам понадобятся?	4	
	5	
	7	
	8	
	2 балла, если присутствуют все	

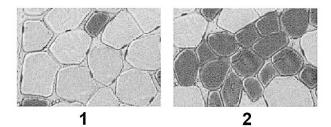

	позиции ответа. 1 балл, если не	
	хватает 1 позиции, при этом не	
	должно быть ошибочной позиции 6.	
Определите жизненную форму и орган	Дерево – 1 балл	2
растения, для которого характерен	Стебель/ стебель двудольного	
такой набор тканей?	растения древесный – 1 балл	
К какому отделу и классу принадлежит	Отдел Покрытосеменные - 1 балл	2
растение?	Класс Двудольные – 1 балл	
Среди представленных тканей	7 – 1 балл	2
выберите основные	8 – 1 балл	
Расположите ткани в виде	2-▶3-▶8-▶1-▶4-▶5-▶7	2
последовательности от периферии к	2 балла, если присутствуют все	
центру	позиции ответа.1 балл, если одна	
	ошибка- порядок рядом	
	расположенных позиций наоборот,	
	при этом не должно быть ошибочной	
	позиции 6.	
	nosiiqiii o.	


3.3 9 баллов

Томас Морган получил Нобелевскую премию по физиологии и медицине 1933 г. «За важные открытия, связанные с ролью хромосом в наследственности». Открытие Моргана дало мощный толчок развитию генетики, достижениями которой мы пользуемся ежедневно.

представитель	кариотип
папоротник	52
сфагнум	38
лук	16

Перед вами девять объектов. Проведите анализ по суммарному количеству хромосом в клетках объектов. Для облегчения анализа считайте количество клеток в объектах одинаковым. Расположите объекты в последовательный ряд. Сначала объекты с наименьшим суммарным количеством хромосом во всех клетках, затем средним количеством и в завершении максимальным количеством хромосом во всех клетках. В объектах 1-3 необходимо анализировать клетки в выделенных зонах.



	T "	1-
№ объекта	Порядковый номер в последовательности	Балл
1	7	1 балл
2	6	1 балл
3	3	1 балл
4	4	1 балл
5	1	1 балл
6	2	1 балл
7	8	1 балл
8	9	1 балл
9	5	1 балл

4.3 10 баллов

Скелетные мышцы могут расти тремя способами: внутриутробно новые клетки образуются, а в течение жизни они могут вытягиваться или утолщаться. Рост мышцы в длину зависит от включения новых миобластов, а утолщение, как за счет новых миобластов, так и за счет увеличения саркоплазмы и числа миофибрилл.

На рисунке показаны поперечные срезы мышц двух спортсменов. У спортсмена 2 преобладают красные (тёмно-серые на рисунке) мышечные волокна, у спортсмена 1 — белые (светло-серые на рисунке).

Проанализируйте иллюстрации и решите задачу.

Элемент задачи	Ответ	Балл

Какой белок обеспечивает	Миоглобин– 1 балл	2 балла
красный цвет мышцам и	Чем больше миоглобина, тем мышечная ткань	
почему он красного цвета?	краснее, так как миоглобин содержит Fe 2+ - 1	
	балл	
У какого спортсмена	Спортсмен 2. – 1 балл	2 балла
наименьшая скорость расхода	Аэробное окисление. Преобладают медленные	
энергии в мышцах, какой этап	или медленно-сокращающиеся мышечные	
энергетического обмена	волокна (красные), в которых поступление	
обеспечивает энергией работу	АТФ происходит медленно из митохондрий,	
преобладающих мышечных	поэтому в клетках большое количество	
волокон?	митохондрий – 1 балл	
За счет каких структур	За счет саркоплазмы/цитоплазмы	2 балла
разрастаются белые мышечные		
волокна у спортсмена 1		
С какими мышечными	Продолжительная и не интенсивная работа:	2 балла
нагрузками лучше справляется	стайерские (длинные) дистанции в плавании и	
спортсмен 2?	беге, ходьба, занятия с легкими весами в	
	умеренном темпе	
Как необходимо проводить	Нужно проводить анаэробные тренировки.	2 балла
тренировку, чтобы количество	Нагрузки от 25-30% максимальной силы,	
белых мышечных волокон	большие веса с малым количеством	
увеличилось?	повторений, например бодибилдинг	

5.3 10 баллов

Все изученные виды малярийных плазмодиев имеют кариотип 14 хромосом и по одной митохондрии.

Предположим, что в процессе эндоэритроцитарной шизогонии у Plasmodium malariae образуется 10 ядер. Исходное количество мерозоитов 10. У виртуального пациента прошло пять циклов эндоэритроцитарной шизогонии. Решите задачу.

Элемент задачи	Ответ	Балл
Определите суммарное число ядер во всех	1 000 000	2
зрелых шизонтах (трофозиодах) после пяти		
циклов шизогонии		
Определите суммарное число центромер во всех	7 000 000	2
ядрах зрелых шизонтов (трофозиодов) после		
пяти циклов шизогонии, если учесть, что		
хромосомы однохроматидные		
Определите суммарное число теломер во всех	14 000 000	2
ядрах зрелых шизонтов (трофозиодов) после		
пяти циклов шизогонии, если учесть, что		
хромосомы однохроматидные		
Определите суммарное число хромосом в зиготе	14	2
Plasmodium malariae		
Определите суммарное количество теломер и	70	2
центромер в зиготе Plasmodium malariae,		
учитывая, что хромосомы двухроматидные		

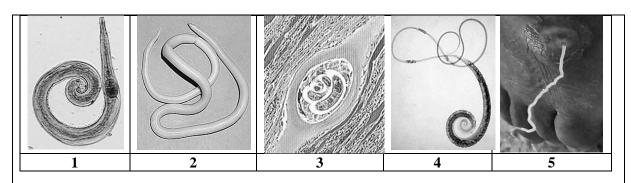
	6.3	10 баллов				
	На	иллюстрации	результаты	эксперимента	ПО	АТЦГ
	секвен	нированию Фре,	дерика Сенгер	ра. Проанализиру	уйте	
	резуль	таты экспериме	ента и решите	задачу.		
						_
						_
						_
Ц						

Элемент задачи	Ответ	Балл
Секвернируемая последовательность в направлении 3' - 5'	3' ЦАА АГЦ АТЦ 5'	2 балла
Определите общее количество шестичленных гетероциклов в секвенированной последовательности	9	2 балла
Определите суммарное количество пятичленных гетероциклов в секвенированной последовательности	14	2 балла
Определите суммарное количество пиримидиновых нуклеотидов в секвенируемой последовательности	4	2 балла
Определите суммарное количество пуриновых нуклеотидов в секвенируемой последовательности	5	2 балла

7.3 11 баллов

Вы — научный сотрудник лаборатории по поиску эффективных лекарственных препаратов для человека. Лаборатория разделена на рабочие группы, каждая из которых решает свои задачи.

В виварии лаборатории для исследований есть модельные животные: белые крысы – 40 особей, морская свинка – 10 особей, тритон – 10 особей, травяная лягушка – 50 особей.


Проанализируйте предложенный список животных и решите задачи.

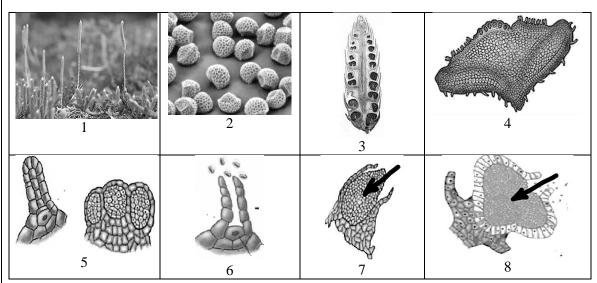
Ответ	Балл
10 012 000	5 баллов
160	2 балла
50	2 балла
420	2 балла
	10 012 000 160 50

8.3 10 баллов

Лауреатами Нобелевской премии в области физиологии и медицины 2015 года стали Уильям Кэмпбелл и Сатоси Амура за получение препаратов для лечения **гельминтозов**, вызываемых круглыми червями.

Вы сотрудник научной группы. Объекты исследования группы представлены в таблице. Все объекты, представленные в таблице, должны быть обработаны флюорофором, специфично связывающимся с определенной группой белков кутикулы и окрашивавшим её в голубой цвет.

Вы исследуете объект № 3.


Перед вами несколько задач. Решите их!

№	Задача	Ответ	Балл
задачи 1	Назовите гельминта	Трихинелла	2
2	Какой способ введения флуорофора вы выберете, чтобы выявить личиночные стадии объекта?	Внутривенное, внутримышечное введение	2
3	Регулярные результаты исследований в течение месяца, проводимые по графику с 14.00 до 14.30 дают только одно место локализации паразита: межреберные мышцы. Объясните почему?	Личиночные стадии локализованы в межреберной мускулатуре. Затем они инкапсулируются.	3
4	Для выявления половозрелых стадий паразита хозяину перорально ввели флуорофор, но паразита не обнаружили. Объясните почему?	Половозрелые стадии имеют микроскопические размеры и паразитируют в кишечнике короткий период времени.	3

9.3 10 баллов

Внимательно изучите иллюстрации и решите задачу.

При изучении объекта вами были получены фотографии. Ваша задача- идентифицировать объект, изучив его согласно алгоритму.

Элемент задачи	Ответ	Балл
Выберите фотографии, на которых	1	2
изображены диплоидные стадии развития	3	
объекта	7	
	2 балла, если присутствуют все	

	позиции ответа.	
	1 балл, если одна ошибка	
Выберите гаплоидные стадии объекта	2	2
	4	
	5	
	6	
	8	
	2 балла, если присутствуют все	
	позиции ответа.	
	1 балл, если одна ошибка	
Расположите фотографии в соответствии с	8-▶2-▶4-▶5-▶6-▶7-▶1-▶3	2
циклом развития объекта, начиная с	2 балла, если присутствуют все	
образования споры	позиции ответа.	
	1 балл, если одна ошибка в виде изменения порядка двух рядом	
	расположенных позиций	
Определите, на каких фотографиях	1	2
изображены спорангии	3	
1	8	
	2 балла, если присутствуют все	
	позиции ответа.	
	1 балл, если одна ошибка	
Определите таксономическую	Отдел Плауновидные - 1 балл	2
принадлежность объекта (отдел, род)	Род Плаун – 1 балл	

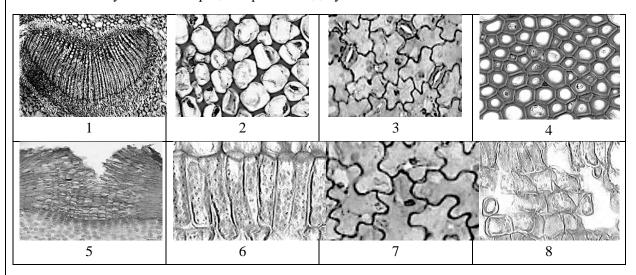
10.3 10 баллов

В 1936 году Отто Лёви стал лауреатом Нобелевской премии за открытие химической природы передачи сигнала от одного нейрона к другому. В его лаборатории провели следующий опыт: изолировали два быющихся сердца лягушек, в одном из них оставили симпатический нерв, в другом удалили. Оба сердца поместили в сосуды с физиологическим раствором, не влияющим на частоту сердечных сокращений. Далее электрическим током возбуждали нерв, частота сокращений сердца изменялась. Через некоторое время раствор из этого сосуда, где находилось сердце с симпатическим нервом, переносили в другой сосуд, где сокращалось сердце без нерва, частота сокращений сердца также изменялась. По результатам экспериментов Лёви сделал вывод, что при возбуждении нерва выделяется некое вещество, которое и в растворе сохраняет своё действие.

Элементы задачи	Ответ	Балл
Что происходило с сердцем донора при	Сердечная деятельность	2 балла
раздражении симпатического нерва?	усиливалась	
Какое химическое вещество отвечает за	Адреналин (норадреналин)	2 балла
передачу сигнала от симпатического нерва?		
Как называется группа химических веществ,	медиатор/нейромедиатор	2 балла
передающих нервный импульс от одной		
клетки к другой или к рабочему органу?		
Где у человека расположены ядра	Боковые рога спинного мозга	2 балла
симпатических нервов?		
Выберите органы, которые иннервируются	123456789 (все)	2 балла
симпатическими нервами:	Правильный ответ только при	
1. Лимфатические сосуды 2. Слюнные	наличии всех цифр	
железы 3. Гортань 4. Трахея 5. Бронхи 6.		
Пищевод 7. Желудок 8. Тонкий кишечник 9.		
Толстый кишечник		

10 класс

Вариант 4.


1.4 10 баллов

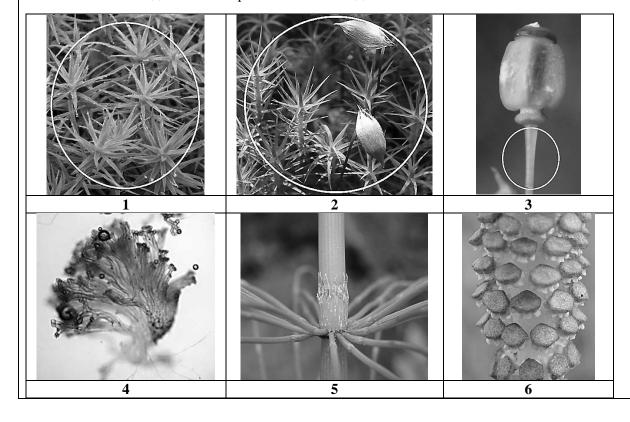
Белок **G** состоит из 89 аминокислот. Используя одно из свойств генетического кода и знания строения β-спирали ДНК решите задачу, учитывая, что, число нуклеотидов, входящих в состав четырех интронов гена отвечающего за синтез белка **G** составляет 244 (цифра взята произвольно для решения задачи), число нуклеотидов, входящих в состав участков ДНК, регулирующих процесс синтеза белка 305 (цифра взята произвольно для решения задачи). Результаты округлить до целого числа по правилу математики.

Элемент задачи	ответ	балл
Определите количество витков участка β-спирали ДНК, в	51	2 балла
которой расположен ген, отвечающий за синтез первичной		
структуры белка G		
Определите длину гена (в нм) в конформации β-спирали ДНК,	175	2 балла
отвечающего за синтез белка G		
Определите суммарную длину «экзонной» части гена (в нм) в	92	2 балла
конформации β-спирали ДНК, отвечающего за синтез белка G		
Определите суммарную длину «интронной» части гена (в нм) в	83	2 балла
конформации β-спирали ДНК, отвечающего за синтез белка G		
Определите суммарное число участков РНК, объединяемых в	5	2 балла
процессе сплайсинга		

2.4 10 баллов

Внимательно изучите иллюстрации и решите задачу.

Элемент задачи	Ответ	Балл
Из предложенного набора вам нужно	1	2
составить орган растения, используя	2	
максимальное количество тканей. Какие	3	
ткани вам понадобятся?	4	
	6	
	7	
	8	
	2 балла, если присутствуют все	
	позиции ответа. 1 балл, если не	
	хватает 1 позиции, при этом не	
	должно быть ошибочной позиции 5.	
Определите орган растения, для	Лист/ Дорзовентральный (спино-	1
которого характерен такой набор	брюшной) лист	

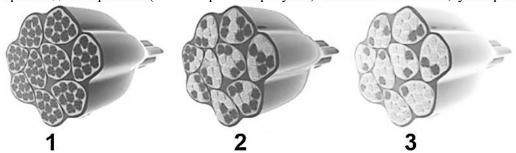

тканей?		
К какому отделу и классу принадлежит	Отдел Покрытосеменные – 1 балл	2
растение?	Класс Двудольные – 1 балл	
Среди представленных тканей выберите	3 – 1 балл	3
покровные	5 — 1 балл	
	7 — 1 балл	
Расположите ткани в виде	7-▶2-▶4-▶1-▶4-▶3	2
последовательности сверху вниз через	2 балла, если присутствуют все	
центр органа	позиции ответа.	
	1 балл, если одна ошибка - порядок рядом расположенных позиций наоборот, при этом не должно быть ошибочной позиции 5.	

3.4 9 баллов

Томас Морган получил Нобелевскую премию по физиологии и медицине 1933 г. «За важные открытия, связанные с ролью хромосом в наследственности». Открытие Моргана дало мощный толчок развитию генетики, достижениями которой мы пользуемся ежедневно.

1	J F1
представитель	кариотип
Кукушкин лён	14
хвощ	216
ландыш	16

Перед вами девять объектов. Проведите анализ по суммарному количеству хромосом в клетках объектов, расположенных в области ограниченной овалом. Для облегчения анализа считайте количество клеток в объектах одинаковым. Расположите объекты в последовательный ряд. Сначала объекты с наименьшим суммарным количеством хромосом во всех клетках, затем средним количеством и в завершении максимальным количеством хромосом во всех клетках. В объектах 1-3 необходимо анализировать клетки в выделенных зонах.



№ объекта	Порядковый номер в последовательности	Балл
1	1	1 балл
2	2	1 балл
3	4	1 балл
4	7	1 балл
5	9	1 балл
6	8	1 балл
7	5	1 балл
8	6	1 балл
9	3	1 балл

4.4 10 баллов

Новые клетки скелетных мышц образуются внутриутробно, а в течение жизни они могут вытягиваться или утолщаться. Рост мышцы в длину зависит от включения новых миобластов, а утолщение, как за счет новых миобластов, так и за счет увеличения саркоплазмы и числа миофибрилл.

На рисунке схематично показаны поперечные срезы мышц трех спортсменов. У спортсмена 1 преобладают красные (тёмно-серые на рисунке) мышечные волокна, у спортсмена 3 – белые.

Проанализируйте иллюстрации и решите задачу.

Элемент задачи	Ответ	Балл
Влияет ли содержание миоглобина на	Да – 1 балл	2 балла
цвет мышечных клеток и почему?	Миоглобин красный, так как содержит Fe 2+,	
	чем больше миоглобина, тем темнее клетка –	
	1 балл	
Влияет ли содержание митохондрий	Да – 1 балл	2 балла
на скорость расхода энергии и силу	Из митохондрий при аэробном окислении	
сокращений мышц и почему?	поступление АТФ происходит медленно (в	
	медленных или медленно-сокращающихся	
	мышечных волокнах (красных), при	
	гликолизе, который протекает в саркоплазме	
	клеток происходит быстрое восстановление	

	молекул АТФ при быстром расходе в быстрых или быстросокращающихся (белых) волокнах. Чем больше митохондрий, тем меньше скорость расхода энергии, меньше сила и больше выносливость – 1 балл	
За счет каких структур разрастаются	За счет размера и плотности	2 балла
красные (тёмно-серые на рисунке)	миофибрилл/мышечных волокон	
мышечные волокна у спортсмена 1?		
Какие мышечные нагрузки лучше	Быстрые, мощные, но кратковременные, так	2 балла
выполняет спортсмен 3?	как его мышцы обладают низкой	
	выносливостью усилий, занятия с тяжелыми	
	весами в быстром темпе	
Как проводить тренировку, чтобы	Аэробные тренировки: длительные нагрузки	2 балла
увеличить количество красных	20-25% от максимальной силы, небольшие	
(тёмно-серые на рисунке) мышечных	веса с большим количеством повторений,	
волокон?	например пауэрлифтинг, армрестлинг	

5.4 10 баллов

Все изученные виды малярийных плазмодиев имеют кариотип 14 хромосом и по одной митохондрии.

Предположим, что в процессе эндоэритроцитарной шизогонии у Plasmodium vivax образуется 12 ядер. Исходное количество мерозоитов 10. У виртуального пациента прошло четыре циклов эндоэритроцитарной шизогонии. Решите задачу.

Элемент задачи	Ответ	Балл
Определите суммарное число ядер во всех зрелых	207 360	2
шизонтах (трофозиодах) после четырёх циклов		
шизогонии		
Определите суммарное число центромер во всех	1 451 520	2
ядрах зрелых шизонтов (трофозиодов) после		
четырёх циклов шизогонии, если учесть, что		
хромосомы однохроматидные		
Определите суммарное число теломер во всех	2 903 040	2
ядрах зрелых шизонтов (трофозиодов) после		
четырёх циклов шизогонии, если учесть, что		
хромосомы однохроматидные		
Определите суммарное число хромосом в зиготе	14	2
Plasmodium vivax		
Определите суммарное количество теломер и	42	2
центромер в зиготе Plasmodium vivax, учитывая,		
что хромосомы однохроматидные		

На иллюстрации результаты эксперимента по секвенированию Фредерика Сенгера. Проанализируйте результаты эксперимента и решите задачу.	6.4 10 баллов		
	На иллюстрации секвенированию Фре	дерика Сенгера. Проанализируйте	

Элемент задачи	Ответ	Балл
Секвернируемая последовательность в направлении 3' - 5'	3' ГТГ ТЦГ ТАГ 5'	2 балла
Определите общее количество	9	2 балла

шестичленных гетероциклов в секвенированной последовательности		
Определите суммарное количество	14	2 балла
пятичленных гетероциклов в		
секвенированной последовательности		
Определите суммарное количество	4	2 балла
пиримидиновых нуклеотидов в		
секвенируемой последовательности		
Определите суммарное количество	5	2 балла
пуриновых нуклеотидов в секвенируемой		
последовательности		

7.4 11 баллов

Вы — научный сотрудник лаборатории по поиску эффективных лекарственных препаратов для человека. Лаборатория разделена на рабочие группы, каждая из которых решает свои задачи.

В виварии лаборатории для исследований есть модельные животные: голубь – 15 особей, крыса – 60 особей, саламандра – 10 особей, прыткая ящерица – 20 особей.

Проанализируйте предложенный список животных и решите задачи.

Элемент задачи	Ответ	Балл
Определите общее количество нефронов в почках всех	19 002 000	5 баллов
половозрелых животных в виварии, если в качестве		
исходных данных считать, что в пронефросе/головной		
почке их 10, в мезонефросе/туловищной почке их 100, в		
метанефросе/тазовой почке их 100 000		
Определите общее количество камер сердца у животных	180	2 балла
вивария, в которых можно исследовать химические		
параметры венозной крови		
Определите общее количество сосудов, отходящих	95	2 балла
непосредственно от сердца у животных вивария, в которых		
можно исследовать химические параметры артериальной		
крови		
Определите общее количество косточек среднего уха, всех	450	2 балла
животных вивария лаборатории		

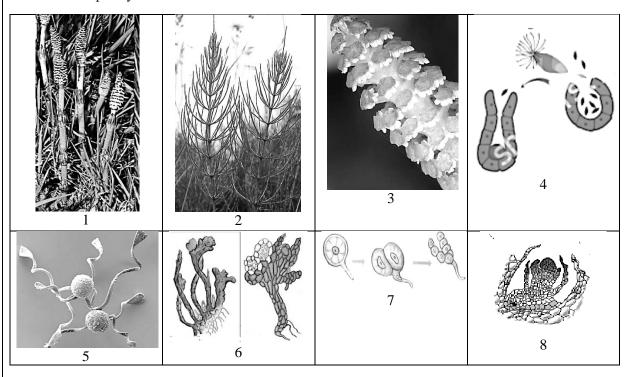
8.4 10 баллов

Лауреатами Нобелевской премии в области физиологии и медицины 2015 года стали Уильям Кэмпбелл и Сатоси Амура за получение препаратов для лечения **гельминтозов**, вызываемых круглыми червями.

Вы сотрудник научной группы. Объекты исследования группы представлены в таблице. Все объекты, представленные в таблице, должны быть обработаны флюорофором, специфично связывающимся с определенной группой белков кутикулы и окрашивавшим её в голубой цвет.

Вы исследуете объект № 5.

Перед вами несколько задач. Решите их!


перед вами несколько задач. Гешите их:			
$N_{\underline{0}}$	Задача	Ответ	Балл
задачи			
1	Назовите гельминта	Ришта	2
2	Какой способ введения флуорофора вы	Подкожное (перкутанное) введение	2

	выберете, чтобы выявить половозрелые стадии объекта?		
3	Регулярные результаты исследований в течение месяца, проводимые по графику с 14.00 до 14.30 дают только одно место локализации паразита: подкожную клетчатку. Объясните почему?	жировой клетчатке нижних	3
4	Для выявления личиночных стадий паразита хозяину перорально ввели флуорофор, но личинок паразита не обнаружили. Объясните почему?	Личиночные стадии выходят из организма хозяина и развиваются в водной среде.	3

 9.4
 10 баллов

 Внимательно изучите иллюстрации и решите задачу.

При изучении объекта вами были получены. Ваша задача- идентифицировать объект, изучив его согласно алгоритму.

Элемент задачи	Ответ	Балл
Выберите фотографии, на которых	1	2
изображены диплоидные стадии развития	2	
объекта	3	
	8	
	2 балла, если присутствуют все	
	позиции ответа.	
	1 балл, если одна ошибка	
Выберите гаплоидные стадии объекта	4	2
	5	
	6	
	7	
	2 балла, если присутствуют все	
	позиции ответа.	
	1 балл, если одна ошибка	

Расположите фотографии в соответствии с циклом развития объекта, начиная с момента образования спорангиев Определите, на каких фотографиях изображены стадии, во время которых происходит мейоз	1-▶3-▶5-▶6-▶4-▶7-▶8-▶2 2 балла, если присутствуют все позиции ответа. 1 балл, если одна ошибка в виде изменения порядка двух рядом расположенных позиций 1 3 2 балла, если присутствуют все позиции ответа.	2
Определите таксономическую принадлежность объекта (отдел, род)	Отдел Хвощевидные - 1 балл Род Хвощ – 1 балл	2

10.4 10 баллов

В 1936 году Отто Лёви стал лауреатом Нобелевской премии за открытие химической природы передачи сигнала от одного нейрона к другому. В его лаборатории провели следующий опыт: изолировали два бьющихся сердца лягушек, в одном из них оставили блуждающий нерв, в другом удалили. Оба сердца поместили в сосуды с физиологическим раствором, не влияющим на частоту сердечных сокращений. Далее электрическим током возбуждали нерв, частота сокращений сердца изменялась. Через некоторое время раствор из этого сосуда, где находилось сердце с блуждающим нервом, переносили в другой сосуд, где сокращалось сердце без нерва, частота сокращений сердца также изменялась. По результатам экспериментов Лёви сделал вывод, что при возбуждении нерва выделяется некое вещество, которое и в растворе сохраняет своё действие.

Элемент задачи	Ответ	Балл
Какое химическое вещество отвечает за	ацетилхолин	2 балла
передачу сигнала от блуждающего нерва?		
Какие функции выполняют волокна, входящие	Чувствительные, двигательные,	2 балла
в состав блуждающего нерва у человека?	парасимпатические	
Как изменяется работа сердца при перерезке	тахикардия	2 балла
только блуждающего нерва и сохранении		
остальных?		
Где у человека расположены ядра	продолговатый мозг	2 балла
блуждающего нерва?		
Выберите органы, которые иннервируются	123456789 (все)	2 балла
блуждающим нервом:	Правильный ответ только при	
1. Бронхи 2. Диафрагма 3. Глотка 4.Слюнные	наличии всех цифр	
железы 5. Пищевод 6. Желудок 7.		
Поджелудочная железа 8. Печень 9.		
Сфинктеры кишечника		