ХИМИЯ 11 КЛАСС Вариант I

Задача 1.

1. К примерам соединений, в которых по меньшей мере один элемент проявляет степень окисления +8, можно отнести: OsO₄, RuO₄, XeO₄, XeO₃F₂, перксенаты, ксеноновую кислоту и т.п. Также сообщалось о синтезе тетраоксидов FeO₄ и PuO₄, однако их существование и возможная степень окисления металлов в этих соединениях на данный момент являются предметом споров.

2.

Уравнение реакции	Окислитель	Восстановитель
$2AgCl + 2F_2 = 2AgF_2 + Cl_2 \uparrow$		AgCl (Ag ⁺ и Cl ⁻); от +1
	F ₂ ; от 0 до -1	до +2 для серебра и
		от -1 до 0 для хлора
$2Cu(OH)_2 + KCIO + 2KOH + H_2O = 2K[Cu(OH)_4] + KCI$	ClO⁻; от +1	Cu/OH/22 07 +3 #0 +3
	до -1	Cu(OH) ₂ ; от +2 до +3
$NiCl_2 + 2F_2 + 2KF = K_2[NiF_6] + Cl_2 \uparrow$	C .	Ni ²⁺ ; от +2 до +4
	F ₂	Cl⁻; от -1 до 0
$Cs_2[CoCl_4] + 3F_2 = Cs_2[CoF_6] + 2Cl_2 \uparrow$		[CoCl ₄] ²⁻ (Co ²⁺ и Cl ⁻); от
	F ₂	+2 до +4 для кобальта
		и от -1 до 0 для хлора

3. При взаимодействии 1-хлорнорборнана с металлическим литием происходит реакция переметаллирования, в результате чего образуется 1-норборниллитий $\underline{\mathbf{A}}$. Взаимодействие $\underline{\mathbf{A}}$ с дихлоридом кобальта приводит к диспропорционированию Co^{2+} на Co^{4+} и металлический кобальт, при этом образуется тетракис(1-норборнил)кобальт(IV) $\underline{\mathbf{B}}$. Окисление этого соединения тетрафтороборатом серебра сопровождается выделением металлического Ag и образованием соли $\underline{\mathbf{C}}$, в которой кобальт формально проявляет степень окисления +5.

$$+ 2Li = LiCI + A$$

$$+ 2CoCl2 = 4LiCI + Col + B$$

+ AgBF₄ = Ag
$$\downarrow$$
 + Co [BF₄]

- 1. За правильно приведённые примеры соединений, в которых по меньшей мере один химический элемент проявляет степень окисления +8 по 1 баллу всего 2 балла.
- 2. За правильно заполненные пропуски в уравнениях реакций по 1 баллу (без коэффициентов по 0.5 балла) всего 4 балла.
- 3. За правильно указанные окислители и восстановители по 0,5 балла, за правильно указанные изменения ст.ок. по 0,5 балла всего 4 балла.
- 4. За установление структурных формул соединений A, B, C по 3 балла всего 9 баллов.
- 5. За уравнения реакций в пункте 3 задачи по 1 баллу всего 3 балла. Итого: 22 балла

Задача 2.

1. Восстановление амидов карбоновых кислот алюмогидридом лития приводит к образованию аминов.

2. Гидроборирование алкенов комплексом BH_3 и тетрагидрофурана с последующим окислением образующегося триалкилборана пероксидом водорода в щелочной среде приводит к образованию спирта, при этом ОН-группа связывается с наименее замещённым атомом углерода. Суммарно весь процесс можно представить как присоединение воды к алкену против правила Марковникова.

3. Взаимодействие алкенов с *мета*-хлорпероксибензойной кислотой (реакция Прилежаева) приводит к образованию соответствующих эпоксидов.

4. Иодирование ароматических соединений смесью I_2 и $CuCl_2$ протекает по механизму ароматического электрофильного замещения, при этом $CuCl_2$, судя по всему, выполняет роль окислителя и слабой кислоты Льюиса. CH_3 -группы, как и в других подобных процессах, ориентируют замещение в орто- и пара-положения цикла.

5. Фотолитическое разложение диазометана сопровождается отщеплением молекулярного азота и образованием карбена :CH₂, который способен присоединяться к двойным связям алкенов с образованием циклопропанов.

6. Терминальные алкины в присутствии солей одновалентной меди вступают с арилгалогенидами в реакцию кросс-сочетания, сопровождающуюся образованием новых С-С связей.

$$C_4H_9$$
 C_4H_9
 C_4H_9
 C_4H_9
 C_4H_9
 C_4H_9

Критерии оценивания

- 1. За структурные формулы продуктов реакций 1-3 по 2 балла всего 6 баллов.
- 2. За структурные формулы продуктов реакций 4-6 по 4 балла всего 12 баллов.

Итого: 18 баллов

Задача 3.

1. Схема позитронного распада галлия-68:

$$^{68}_{31}$$
Ga $\rightarrow ^{68}_{30}$ Zn + $^{0}_{+1}$ e + ν_{e}

2. На основании схемы реакции синтеза и структурной формулы 68 Ga-DOTA-TATE можно сделать вывод о том, что хлорид и пептид реагируют в эквимолярном соотношении. DOTA-TATE находится в избытке. Все вычисления проводим по 68 GaCl $_3$.

Из закона радиоактивного распада несложно найти связь между постоянной распада и периодом полураспада (вывод формулы нахождения λ не оценивается):

$$\lambda = \ln 2/T_{1/2}$$

$$\lambda = \ln 2/(67,71*60) = 1,71*10^{-4} c^{-1}$$

По уравнению закона радиоактивного распада:

$$t = \ln(N_t/N_0)/(-\lambda)$$

Зная, что активность продукта реакции равна 653,2 МБк, найдем $N_t(^{68}\text{Ga})$ (к моменту окончания синтеза):

$$\begin{split} N_t &= A_t/\lambda \\ N_t &= 653.2*10^6/(1.71*10^{-4}) = 3.83*10^{12} \end{split}$$

Дальнейшие вычисления можно вести по-разному (с использованием молей, числа атомов и т.д.).

Найдем $N_0(^{68}Ga)$:

$$\begin{split} N &= nN_A \\ N_0(^{68}Ga) &= 0,0079*10^{-9}*6,02*10^{23} = 4,76*10^{12} \end{split}$$

Найдем время синтеза t:

$$\begin{split} N_t &= N_0 exp(-\lambda t) \\ &\ln(N_t/N_0)/(-\lambda) = t \\ t &= \ln(3.83*10^{12}/(4.76*10^{12}))/(-1.71*10^{-4}) = 1271.3 \ c = 0.35 \ ч \end{split}$$

Исходная активность ⁶⁸Ga:

$$A_0 = 1{,}71*10^{-4}*4{,}76*10^{12} = 8{,}11*10^8\,\mathrm{K}$$

Количество вещества распавшегося 68 Ga:

$$n_{\text{расп}}(^{68}\text{Ga}) = (N_0 \text{-} N_t)/N_A = 1,54*10^{-12} \text{ моль}$$

3. Схемы ядерных реакций:

$$^{242}_{94}$$
Pu $\rightarrow ^{4}_{2}$ He $+ ^{238}_{92}$ U
 $^{64}_{29}$ Cu $\rightarrow ^{64}_{30}$ Zn $+ ^{0}_{-1}$ e
 $^{1}_{1}$ p $+ ^{7}_{3}$ Li $\rightarrow 2^{4}_{2}$ He

$${}^{3}_{1}H + {}^{3}_{1}H \rightarrow 2{}^{1}_{0}n + {}^{4}_{2}He$$

Критерии оценивания

- 1. За схему позитронного распада галлия-68 1 балл.
- 2. За определение времени синтеза препарата (в час.), исходной активности 68Ga, количества вещества распавшегося 68Ga по 5 баллов всего 15 баллов.
- 3. За уравнения ядерных реакций по 1 баллу всего 4 балла.

Итого: 20 баллов

Задача 4.

Элемент Э очень распространен на нашей планете, образует большое число различных газов, таких элементов немного, один из таких — N (азот). Также дополнительная подсказка связана с оранжево-желтым газом \mathbf{b} , который получается после взаимодействия с Cl_2 , что может говорить о NOCl.

Тогда можно предположить, что бесцветный газ X - NO. $A - NO_2$

 $B - N_2O_3$, проверим это расчетом мольной доли азота в этом соединении: W(N) = 0.368, что соответствует условию. Сухое вещество, содержащее азот в своем составе, взаимодействует с хлором, которое не растворяется в воде, скорее всего Γ – AgNO_{3.} Соединение Д – N₂O₅ – подтверждает то, что оно взаимодействует с водой с образованием единственного продукта Е - HNO₃. Так как X - NO, то массовая доля азота в этом соединении = 0.467. В Y она больше в 1.765 раз, значит она равна Тогда молярная масса Y равна 14n/0.824 = 17n, где n - количество азотов в молекуле, при n = 1 остаток составляет 3, что говорит о том, что $Y - NH_3$. Соединение $\Pi - N_2O_5$ – подтверждает то, что оно взаимодействует с водой с образованием единственного продукта $E - HNO_3$. Ж - NH_4NO_3 Газ 3 - N_2O Простое вещество $И - N_2$

Э	A	Б	В	Γ	Д	E	Ж	3	И	X	Y
N	NO_2	NOCl	N_2O_3	AgNO ₃	N_2O_5	HNO ₃	NH ₄ NO ₃	N ₂ O	N_2	NO	NH ₃

2. Реакции:

- 1. $2NO + O_2 = NO_2$
- 2. $NO + NO_2 = N_2O_3$
- 3. $3N_2O_3 + H_2O = 2HNO_3 + 4NO$
- 4. $2NO + Cl_2 = 2NOCl$
- 5. $3NOC1 + 2H_2O = 3HC1 + HNO_3 + 2NO$
- 6. $4AgNO_3 + 2Cl_2 = 4AgCl + 2N_2O_5 + O_2$
- 7. $N_2O_5 + H_2O = 2HNO_3$
- 8. $HNO_3 + NH_3 = NH_4NO_3$
- 9. $NH_4NO_3 = N_2O + 2H_2O$
- $10.3N_2O + 2NH_3 = 4N_2 + 3H_2O$

- 1. За правильно установленный элемент 9-1.5 балла. За правильно установленные формулы A-И, X и Y по 0.5 баллов -7 баллов.
- 2. За уравнение реакции по 1 баллу (если написано с ошибками, но в целом верно, то по 0.5 баллов) 10 баллов.

Итого: 17 баллов

Задача 5.

1. В условии указано, что при взаимодействии A-E с SiO_2 образуется газ Ж, который содержит кремний. Таких газов немного. Предположим, что это SiF_4 , тогда соединения элемента X и элемента Y содержат фтор. Проверим свое предположение по массовой доле X в Б. Выразим молярную массу Б: M(Б) = 19n/(1-0.384) = 30.84n. В табл. Приведены значения молярных масс Б и X (Y) для разных n.

n	М(Б)	М(остатка)
1	30.84	11.84
2	61.68	23.68
3	92.52	35.52 Cl
4	123.36	47.36
5	154.2	59.20
6	185.04	71.04
7	215.88	82.88

Тоже самое проведем с соединением Е:

M(E) = 19n/(1-0.808) = 99n

n	M(E)	М(остатка)
1	99	80 Br
2	198	160
3	297	240

Таким образом X - Cl, Y - Br. $E - ClF_3$, E = BrF

2. Реакция с SiO₂ в общем виде выглядит следующим образом:

 $nSiO_2 + 4\Im F_m = 2\Im_2 + SiF_4 + mO_2$

Разложение пероксида бария:

 $2BaO_2 = 2BaO + O_2$

ZDuO _Z -	= 2DuO O ₂		
Соед	Количество	$n(O_2)$, моль	n(ЭFn)/n
инение	исходного соединения		(O_2)
A	0.18 моль	0.045	4
ClF ₃	0.113 моль	0.085	1,33
В	0.088 моль	0.11	0,8
Γ	11.6 г	0.083	
Д	26.0 г	0.143	
BrF	26.0 г	0.066	

Для A: m=1, т.е. **A - ClF**

Для B: 4/m=0.8; m=5; B $-ClF_5$

 Γ и Д могут иметь состав BrF_3 и BrF_5

$M(\Gamma)$, г/моль	n(Г), моль	$n(\Im Fn)/n(O_2)$
137	0.085	1
175	0.066	0,8

Соответствует стехиометрии реакции BrF_5 , это Γ , тогда $\mathcal{L} = BrF_3$. Проверим

М(Д), г/моль	n(Д), моль	$n(\Im Fn)/n(O_2)$
91	0.286	1:2
137	0.190	3:4
182	0.143	1:1

Cостав BrF₃ соответствует стехиометрии реакции

A - CIF, B - CIF₃, B - CIF₅,
$$\Gamma$$
 - BrF₅, Π - BrF₃, E - BrF, \mathcal{K} - SiF₄

- 3. Уравнения:
- 1. $SiO_2 + 4ClF = 2Cl_2 + SiF_4 + O_2$
- 2. $3SiO_2 + 4ClF_3 = 2Cl_2 + 3SiF_4 + 3O_2$
- 3. $5SiO_2 + 4ClF_5 = 2Cl_2 + 5SiF_4 + 5O_2$
- 4. $3SiO_2 + 4BrF_3 = 2Br_2 + 3SiF_4 + 3O_2$
- 5. $5SiO_2 + 4BrF_5 = 2Br_2 + 5SiF_4 + 5O_2$
- 6. $SiO_2 + 4BrF = 2Br_2 + SiF_4 + O_2$

Критерии оценивания

- 1) За правильно установленные элементы X и Y по 1,5 балла 3 балла.
- 2) За правильно установленные соединения А-Ж по 2 балла (если не приведены расчеты по 1 баллу) 14 баллов,
- 3) За уравнения реакций А-Е по 1 баллу (если написано с ошибками, но в целом верно, то 1 балл) 6 баллов.

Итого: 23 балла

ХИМИЯ 11 КЛАСС Вариант II

Задача 1.

1. К примерам соединений, в которых по меньшей мере один элемент проявляет степень окисления +8, можно отнести: OsO₄, RuO₄, XeO₄, XeO₃F₂, перксенаты, ксеноновую кислоту и т.п. Также сообщалось о синтезе тетраоксидов FeO₄ и PuO₄, однако их существование и возможная степень окисления металлов в этих соединениях на данный момент являются предметом споров.

2.

Уравнение реакции	Окислитель	Восстановитель
$2AgF + ClF_3 = 2AgF_2 + ClF$	ClF ₃ ;	
	Cl - от +3 до	Ag ⁺ ; от +1 до +2
	+1	
$CuF_2 + F_2 + 2CsF = Cs_2[CuF_6]$	F ₂ ; от 0 до -1	Cu ²⁺ ; от +2 до
	- 2,	+4
$2Au + 5KrF_2 = 2AuF_5 + 5Kr\uparrow$	Kr- от +2 до 0	Au; от 0 до +5
$NiCl_2 + 2F_2 + 2RbF = Rb_2[NiF_6] + Cl_2 \uparrow$	F ₂ ; от 0 до -1	Ni ²⁺ от +2 до +4;
	г ₂ , от 0 до -1	Cl- от -1 до 0

3. При взаимодействии 1-хлорнорборнана с металлическим литием происходит реакция переметаллирования, в результате чего образуется 1-норборниллитий $\underline{\mathbf{A}}$. Взаимодействие $\underline{\mathbf{A}}$ с дихлоридом кобальта приводит к диспропорционированию Co^{2+} на Co^{4+} и металлический кобальт, при этом образуется тетракис(1-норборнил)кобальт(IV) $\underline{\mathbf{B}}$. Окисление этого соединения тетрафтороборатом серебра сопровождается выделением металлического Ag и образованием соли $\underline{\mathbf{C}}$, в которой кобальт формально проявляет степень окисления +5.

$$+ 2Li = LiCI + A$$

$$+ 2CoCl2 = 4LiCI + Co + B$$

- 1. За правильно приведённые примеры соединений, в которых по меньшей мере один химический элемент проявляет степень окисления +8 по 1 баллу всего 2 балла.
- 2. За правильно указанные окислители и восстановители по 0,5 балла, за правильно указанные изменения ст.ок. по 0,5 балла всего 4 балла.
- 3. За установление структурных формул соединений А, В, С по 3 балла всего 9 баллов.
- 4. За уравнения реакций в пункте 3 задачи по 1 баллу всего 3 балла. Итого: 22 балла

Задача 2.

1. Восстановление амидов карбоновых кислот алюмогидридом лития приводит к образованию аминов.

$$NH_2$$

2. Гидроборирование алкенов комплексом BH_3 и тетрагидрофурана с последующим окислением образующегося триалкилборана пероксидом водорода в щелочной среде приводит к образованию спирта, при этом ОН-группа связывается с наименее замещённым атомом углерода. Суммарно весь процесс можно представить как присоединение воды к алкену против правила Марковникова.

3. Взаимодействие алкенов с *мета*-хлорпероксибензойной кислотой (реакция Прилежаева) приводит к образованию соответствующих эпоксидов.

4. Иодирование ароматических соединений трифторацетилгипоиодитом, образующимся *in situ* из иода и трифторацетата серебра, протекает по механизму электрофильного ароматического замещения. Метокси-группы, как и в других подобных процессах, ориентируют замещение в *орто*- и *пара*-положения кольца.

5. Фотолитическое разложение диазометана сопровождается отщеплением молекулярного азота и образованием карбена :CH₂, который способен присоединяться к двойным связям алкенов с образованием циклопропанов.

$$C_2H_5$$

6. Ацетилениды меди в пиридине вступают с арилгалогенидами в реакцию кросссочетания (реакцию Стефенса-Кастро) с образованием новых С-С связей.

Критерии оценивания

- 1. За структурные формулы продуктов реакций 1-3 по 2 балла всего 6 баллов.
- 2. За структурные формулы продуктов реакций 4-6 по 4 балла всего 12 баллов.

Итого: 18 баллов

Задача 3.

1. Схема позитронного распада фтора-18:

$$^{18}{}_{9}F \rightarrow {}^{18}{}_{8}O + {}^{0}{}_{+1}e + \nu_{e}$$

2. На основании приведенной реакции можно сделать вывод о том, что 18 F- и прекурсор реагируют в эквимолярном соотношении. Прекурсор находится в избытке. Все вычисления проводим по 18 F-.

Из закона радиоактивного распада несложно найти связь между постоянной распада и периодом полураспада (вывод формулы нахождения λ не оценивается):

$$\lambda = \ln 2/T_{1/2}$$

$$\lambda = \ln 2/(109,77*60) = 1,05*10^{-4} c^{-1}$$

По уравнению закона радиоактивного распада:

$$t = ln(N_t/N_0)/(-\lambda)$$

Зная, что активность продукта реакции равна 3,02 ГБк, найдем $N_t(^{18}F)$ (к моменту окончания фторирования):

$$\begin{split} N_t &= A_t \! / \! \lambda \\ N_t &= 3.02 \! ^* \! 10^9 \! / (1.05 \! ^* \! 10^{\text{--}4}) = 2.87 \! ^* \! 10^{\text{13}} \end{split}$$

Дальнейшие вычисления можно вести по-разному (с использованием молей, числа атомов и т.д.).

Найдем $N_0(^{18}F)$:

$$N = nN_A$$

 $N_0(^{18}F) = 0.058*10^{-9}*6.02*10^{23} = 3.49*10^{13}$

Найдем время реакции t:

$$\begin{split} N_t &= N_0 exp(-\lambda t) \\ &\ln(N_t/N_0)/(-\lambda) = t \\ t &= \ln(2.87*10^{13}/(3.49*10^{13}))/(-1.05*10^{-4}) = 1864,3 \ c = 0.52 \ ч \end{split}$$

Исходная активность ¹⁸F:

$$A_0 = 1,05*10^{-4}*3,49*10^{13} = 3,67*10^9 \, \text{Ke}$$

Количество вещества распавшегося ¹⁸F:

$$n_{\text{расп}}(^{18}F) = (N_0 - N_t)/N_A = 1.03*10^{-11}$$
 моль

3. Схемы ядерных реакций:

$$^{235}_{92}U \rightarrow ^{231}_{90}Th + ^{4}_{2}He$$

$${}^{1}_{1}p + {}^{6}_{3}Li \rightarrow {}^{4}_{2}He + {}^{3}_{2}He$$

 ${}^{2}_{1}H + {}^{3}_{1}H \rightarrow {}^{1}_{0}n + {}^{4}_{2}He$

- 1. За схему позитронного распада фтора-18 1 балл.
- 2. За определение времени фторирования прекурсора (в час.), исходной активности 18F, количества вещества распавшегося 18F по 5 баллов всего 15 баллов.
- 3. За уравнения ядерных реакций по 1 баллу всего 4 балла.

Итого: 20 баллов

Задача 4.

Элемент Э очень распространен на нашей планете, образует большое число различных газов, таких элементов немного, один из таких -N (азот).

При обработке A холодной водой образуется кислота B, соль которой в дальнейшем может быть окислена пероксидом водорода, значит, B — скорее всего HNO_2 . Так как это единственный продукт реакции при взаимодействии A с холодной водой, то можно предположить, что A - N_2O_3 . Это также можно проверить расчетом: W(N) = 0.368, что соответствует условию. Так как B — бесцветный газ, то B — NO. Γ - $NaNO_2$. Π — $NaNO_3$

Рассчитаем молярную массу Y: 14n/0.824 = 17n, где n – количество азотов, при n = 1 остаток составляет 3, что соответствует $Y - NH_3$

Рассчитаем молярную массу X: 14n/0.424 = 33n, где n – количество азотов, как известно из условия, молекула X содержит на один атом кислорода больше, тогда при n = 1 X – NH_2OH . E - $H_2N_2O_2$, на что может натолкнуть расчет молярной массы исходя из мольной доли азота: M(E) = 14n/0.452 = 31n, где n – количество азотов, где при n = 2 E - $H_2N_2O_2$, Газ 3 - N_2O .Простое вещество $M - N_2$

Э	A	Б	В	Γ	Д	E	Ж	3	И
N	N_2O_3	HNO	NO	NaN	NaNO	H2N	Na_2N_2O	N ₂ O	N_2
		2		O_2	3	202	2		
X	Y								
NH ₂ OH	NH ₃								

2. Реакция 1:

$$N_2O_3 + H_2O = 2HNO_2$$

$$2HNO_2 + 2HI = 2NO + I_2 + 2H_2O$$

$$HNO_2 + NaOH = NaNO_2 + H_2O$$

$$NaNO_2 + H_2O_2 = NaNO_3 + H_2O$$

$$HNO_2 + NH_2OH = H_2N_2O_2 + H_2O$$

$$H_2N_2O_2 + 2NaOH = Na_2N_2O_2 + 2H_2O$$

$$Na_2N_2O_2 + 3I_2 + 3H_2O = NaNO_2 + NaNO_3 + 6HI$$

$$Na_2N_2O_2 + CO_2 = Na_2CO_3 + N_2O$$

$$3N_2O + 2NH_3 = N_2 + 3H_2O$$

$NH_2OH + H_2S = S + NH_3 + H_2O$

Критерии оценивания

- 1. За правильно установленный элемент 9 1.5 балла. За правильно установленные формулы A-И, X и Y по 0.5 баллов 7 баллов.
- 2. За уравнение реакции по 1 баллу (если написано с ошибками, но в целом верно, то по 0.5 баллов) 10 баллов.

Итого: 17 баллов

Задача 5.

F		
n	М(Б)	М(остатка)
1	45,67	26,67
2	91,34	53,34
3	137,01	80,01 Br
4	182,68	106,68
5	228,35	133,35
6	274,02	160,02
7	319,69	186,69

Тоже самое проведем с соединением Г:

M(E) = 19n/(1-0.272) = 99n

n	M(Γ)	М(остатка)
1	26,1	7,1
2	52,2	14,2
3	78,3	21,3
4	104,4	28,4
5	130,5	35,5 Cl
6	156,6	42,6
7	182,7	49,7

Таким образом X - Br, Y - Cl, $E = BrF_3$, $\Gamma = ClF_5$

Реакция с SiO₂ в общем виде выглядит следующим образом:

 $nSiO_2 + 4\Im F_n = 2\Im_2 + SiF_4 + nO_2$

Разложение пероксида бария:

 $2BaO_2 = 2BaO + O_2$

Соединение	Количество исходного	n(O ₂), моль	$n(\Im Fn)/n(O_2)$
	соединения		
A	20.0 г	0.05	
BrF ₃	23.2 г	0.127	

В	16.55 г	0.118	
ClF ₅	0.068 моль	0.085	0,8
Д	0.08 моль	0.06	1,33
E	0.28 моль	0.07	4

Для Д: 4/m=1,33; m=3; Д -ClF₃

Для E: m=1, т.е. E - ClF

A и B могут иметь состав BrF и BrF5

11112 11101 1	inividual courture Ell i		
m	М (А), г/моль	$\mathrm{n}(\Gamma)$, моль	$n(\Im Fn)/n(O_2)$
1	99	0.202	4
5	175	0.114	2,3

Соответствует стехиометрии реакции **BrF**, это Γ , тогда $\Pi = \mathbf{BrF}_5$. Проверим

m	М(В), г/моль	n(Д), моль	$n(\Im Fn)/n(O_2)$
2	118	0.236	0,5
4	156	0.118	1
5	175	0.0945	0,8

Coctab BrF₅ соответствует стехиометрии реакции

A – BrF, B – BrF3, B – BrF5, Γ – ClF5, Π – ClF3, E – ClF, \mathcal{K} – SiF4

3. Уравнения:

- 1. $SiO_2 + 4ClF = 2Cl_2 + SiF_4 + O_2$
- 2. $3SiO_2 + 4ClF_3 = 2Cl_2 + 3SiF_4 + 3O_2$
- 3. $5SiO_2 + 4ClF_5 = 2Cl_2 + 5SiF_4 + 5O_2$
- 4. $SiO_2 + 4BrF = 2Br_2 + SiF_4 + O_2$
- 5. $3SiO_2 + 4BrF_3 = 2Br_2 + 3SiF_4 + 3O_2$
- 6. $5SiO_2 + 4BrF_5 = 2Br_2 + 5SiF_4 + 5O_2$

Критерии оценивания

- 1) За правильно установленные элементы X и Y по 1,5 балла 3 балла.
- 2) За правильно установленные соединения А-Ж по 2 балла (если не приведены расчеты по 1 баллу) 14 баллов,
- 3) За уравнения реакций A-E по 1 баллу (если написано с ошибками, но в целом верно, то 1 балл) 6 баллов.

Итого: 23 балла

ХИМИЯ 11 КЛАСС Вариант III

Задача 1.

1. К примерам соединений, в которых по меньшей мере один элемент проявляет степень окисления +8, можно отнести: OsO_4 , RuO_4 , XeO_4 , XeO_3F_2 , перксенаты, ксеноновую кислоту и т.п. Также сообщалось о синтезе тетраоксидов FeO_4 и PuO_4 , однако их существование и возможная степень окисления металлов в этих соединениях на данный момент являются предметом споров.

2.

Уравнение реакции	Окислитель	Восстановитель
$AgF + KF + F_2 = K[AgF_4]$	F ₂ ; от 0 до -1	Ag+; от +1 до +3
$2Cu(OH)_2 + K_2S_2O_8 + 2KOH = Cu_2O_3 + 2K_2SO_4 +$	$\mathrm{S_2O_8}^{2 ext{-}}$ за счёт	
$3H_2O$	пероксидного	Си(ОН)2; от +2 до
	кислорода; от -1	+3
	до -2	
$CuCl + 3KCl + 3F_2 = K_3[CuF_6] + 2Cl_2 \uparrow$	F ₂ ; от 0 до -1	Cu ⁺ ; от +1 до +3
	12, 01 0 до -1	Cl ⁻ ; от -1 до 0
$2Au + 5KrF_2 + 2KF = 2K[AuF_6] + 5Kr\uparrow$	KrF ₂ ; от +2 до 0	Au; от 0 до +5

3. При взаимодействии 1-хлорнорборнана с металлическим литием происходит реакция переметаллирования, в результате чего образуется 1-норборниллитий $\underline{\mathbf{A}}$. Взаимодействие $\underline{\mathbf{A}}$ с дихлоридом кобальта приводит к диспропорционированию Co^{2+} на Co^{4+} и металлический кобальт, при этом образуется тетракис(1-норборнил)кобальт(IV) $\underline{\mathbf{B}}$. Окисление этого соединения тетрафтороборатом серебра сопровождается выделением металлического Ag и образованием соли $\underline{\mathbf{C}}$, в которой кобальт формально проявляет степень окисления +5.

$$+ 2Li = LiCI +$$

$$+ 2CoCl2 = 4LiCI + Col +$$

$$B$$

+ AgBF₄ = Ag
$$\downarrow$$
 + Co [BF₄]

- 1. За правильно приведённые примеры соединений, в которых по меньшей мере один химический элемент проявляет степень окисления +8 по 1 баллу всего 2 балла.
- 2. За правильно указанные окислители и восстановители по 0,5 балла, за правильно указанные изменения ст.ок. по 0,5 балла всего 4 балла.
- 3. За установление структурных формул соединений А, В, С по 3 балла всего 9 баллов.
- 4. За уравнения реакций в пункте 3 задачи по 1 баллу всего 3 балла. Итого: 22 балла

Задача 2.

1. Восстановление амидов карбоновых кислот алюмогидридом лития приводит к образованию аминов.

2. Гидроборирование алкенов комплексом BH_3 и тетрагидрофурана с последующим окислением образующегося триалкилборана пероксидом водорода в щелочной среде приводит к образованию спирта, при этом ОН-группа связывается с наименее замещённым атомом углерода. Суммарно весь процесс можно представить как присоединение воды к алкену против правила Марковникова.

3. Взаимодействие алкенов с *мета*-хлорпероксибензойной кислотой (реакция Прилежаева) приводит к образованию соответствующих эпоксидов.

4. Иодирование ароматических соединений в присутствии окислителей (HNO₃, HIO₄ и т.п.) протекает по механизму электрофильного ароматического замещения, при этом CH₃-группа, как и в других подобных реакциях, ориентирует замещение в *орто*- и *пара*-положение. Окислитель в данной системе способствует генерации активной электрофильной частицы, а также смещению равновесия в сторону образования продуктов реакции, т.к. окисляет побочный продукт – HI.

5. Фотолитическое разложение диазометана сопровождается отщеплением молекулярного азота и образованием карбена :СН₂, который способен присоединяться к двойным связям алкенов с образованием циклопропанов.

$$C_3H_7$$

6. Ацетилениды меди в пиридине вступают с арилгалогенидами в реакцию кросссочетания (реакцию Стефенса-Кастро) с образованием новых С-С связей.

Критерии оценивания

- 1. За структурные формулы продуктов реакций 1-3 по 2 балла всего 6 баллов.
- 2. За структурные формулы продуктов реакций 4-6 по 4 балла всего 12 баллов.

Итого: 18 баллов

Задача 3.

1. Схема позитронного распада фтора-18:

$$^{18}{}_{9}F \rightarrow ^{18}{}_{8}O + ^{0}{}_{+1}e + v_{e}$$

2. На основании приведенной реакции можно сделать вывод о том, что 18 F- и прекурсор реагируют в эквимолярном соотношении. Прекурсор находится в избытке. Все вычисления проводим по 18 F-.

Из закона радиоактивного распада несложно найти связь между постоянной распада и периодом полураспада (вывод формулы нахождения λ не оценивается):

$$\lambda = \ln 2/T_{1/2}$$

$$\lambda = \ln 2/(109,77*60) = 1,05*10^{-4} c^{-1}$$

По уравнению закона радиоактивного распада:

$$t = \ln(N_t/N_0)/(-\lambda)$$

Зная, что активность продукта реакции равна 3,02 ГБк, найдем $N_t(^{18}F)$ (к моменту окончания фторирования):

$$\begin{split} N_t &= A_t \! / \! \lambda \\ N_t &= 3,4*10^9 \! / (1,05*10^{-4}) = 3,23*10^{13} \end{split}$$

Дальнейшие вычисления можно вести по-разному (с использованием молей, числа атомов и т.д.).

Найдем $N_0(^{18}F)$:

$$N = nN_A$$

$$N_0(^{18}F) = 0.062*10^{-9}*6.02*10^{23} = 3.73*10^{13}$$

Найдем время реакции t:

$$\begin{split} N_t &= N_0 exp(-\lambda t)\\ &ln(N_t/N_0)/(-\lambda) = t\\ t &= ln(3.23*10^{13}/(3.73*10^{13}))/(-1.05*10^{-4}) = 1371.8\ c = 0.38\ ч \end{split}$$

Исходная активность ¹⁸F:

$$A_0 = 1{,}05*10^{\text{-}4}*3{,}73*10^{13} = 3{,}93*10^9\,\text{K}\text{K}$$

Количество вещества распавшегося ¹⁸F:

$$n_{\text{расп}}(^{18}F) = (N_0\text{-}N_t)/N_A = 8{,}33*10^{\text{-}12}$$
 моль

3. Схемы ядерных реакций:

$$^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}He$$
 $^{137}_{55}Cs \rightarrow ^{137}_{56}Ba + ^{0}_{-1}e$
 $^{223}_{88}Ra \rightarrow ^{14}_{6}C + ^{209}_{82}Pb$
 $^{2}_{1}H + ^{3}_{1}H \rightarrow ^{1}_{0}n + ^{4}_{2}He$

- За схему позитронного распада фтора-18 1 балл.
- 2. За определение времени фторирования прекурсора (в час.), исходной активности 18F, количества вещества распавшегося 18F по 5 баллов – всего 15 баллов.
- 3. За уравнения ядерных реакций по 1 баллу – всего 4 балла.

Итого: 20 баллов

Задача 4.

Элемент Э очень распространен на нашей планете, образует большое число различных газов, таких элементов немного, один из таких – N (азот). Также дополнительная подсказка связана с веществом А, которое играет большую роль в аналитической химии: оно содержит азот в своем составе, взаимодействует с хлором с образованием соли, которая не растворяется в воде, скорее всего речь идет о $A - AgNO_3$. Соединение $B - N_2O_5 - подтверждает то, что оно$ взаимодействует с водой с образованием единственного продукта В - HNO₃, также дана массовая доля азота в этом соединении, проверим: w(N) = 0.259, что соответствует условию. В - HNO_3 . $\Gamma - NO_2$. Д - NOC1 - оранжево-желтый газ.

Рассчитаем молярную массу Y: 14n/0.824 = 17n, где n -количество азотов, при n =1 остаток составляет 3, что соответствует $Y - NH_3$

Рассчитаем молярную массу X: 14n/0.144= 97n, где n - количество азотов, как известно из условия, при n = 1 масса остатка 83, также сказано, что молекула X сильная кислота, содержащая серу, если вычтем и ее получим остаток 51, что, если немного поподбирать, хорошо соотносится с тремя атомами водорода и кислорода, тогда $X - NH_2SO_3H$. E - NO (бесцветный газ). Ж - NH_4NO_3 Газ 3 - N_2O . Простое вещество $И - N_2$

2.

Э	A	Б	В	Γ	Д	${f E}$	Ж	3	И
N	AgNO ₃	N_2O_5	HNO_3	NO_2	NOCl	NO	NH ₄ NO ₃	N_2O	N_2
X	Y						1		
NH ₂ SO ₃ H	NH ₃								

Реакция 1: $2AgNO_3 + Cl_2 = 2AgCl + N_2O_5 + O_2$ $N_2O_5 + H_2O = 2HNO_3$ $5HNO_3 + P = 5NO_2 + H_3PO_4 + H_2O$ $2NO_2 + KCl = NOCl + KNO_3$ $2NOC1 + 2HI = 2NO + 2HC1 + I_2$ 3NOC1 + 2H₂O = HNO₃ + 3HC1 + 2NO

$$SNOC1 + 2H_2O = HNO_3 + 3H_3$$

 $HNO_3 + NH_3 = NH_4NO_3$

$$\begin{split} NH_4NO_3 &= N_2O + 2H_2O \\ HNO_3 + NH_2SO_3H &= H_2SO_4 + N_2O + H_2O \\ 3N_2O + 2NH_3 &= N_2 + 3H_2O \end{split}$$

Критерии оценивания

- 1. За правильно установленный элемент 9 1.5 балла. За правильно установленные формулы A-И, X и Y по 0.5 баллов 7 баллов.
- 2. За уравнение реакции по 1 баллу (если написано с ошибками, но в целом верно, то по 0.5 баллов) 10 баллов.

Итого: 17 баллов

Задача 5.

1. В условии указано, что при взаимодействии A-E с SiO_2 образуется газ X, который содержит кремний. Таких газов немного. Предположим, что это SiF_4 , тогда соединения элемента X и элемента Y содержат фтор. Проверим свое предположение по массовой доле X в E0. Выразим молярную массу E1. E19E10/(1-0.651) = 54.44E10. В табл. Приведены значения молярных масс E2 и E3 для разных E3.

n	М(Б)	М(остатка)
1	54,4	35,4 ~ 35.5 Cl
2	108,8	70,8
3	163,2	106,2
4	217,6	141,6
5	272	177
6	326,4	212,4
7	380,8	247,8

Тоже самое проведем с соединением Е:

M(E) = 19n/(1-0.457) = 35n

n	$M(\Gamma)$	М(остатка)
1	35	16
2	70	32
3	105	48
4	140	64
5	175	80 Br
6	210	96
7	245	112

Таким образом X - Cl, Y - Br, B = ClF, $E = BrF_5$

Реакция с SiO₂ в общем виде выглядит следующим образом:

 $nSiO_2 + 4\Im F_n = 2\Im_2 + SiF_4 + nO_2$

Разложение пероксида бария:

 $2BaO_2 = 2BaO + O_2$

Соединение	Количество исходного	n(O ₂), моль	$n(\Im Fn)/n(O_2)$
	соединения		

A	0.04 моль	0,05	0,8
Б	0.1 моль	0,075	1,33
ClF	0.32 моль	0,08	4
Γ	17.4 г	0,044	
Д	17.6 г	0,096	
BrF ₅	6.7 г	0,048	

Для A: m=5, т.е. **A – ClF**₅

Для Б: 4/m=1,33; m=3; Б -ClF₃

Г и Д могут иметь состав BrF и BrF₃

m	$M(\Gamma)$, г/моль	n(Г), моль	$n(\Im Fn)/n(O_2)$
1	99	0.175	4
5	175	0.100	2,3

Соответствует стехиометрии реакции **BrF**, это Γ , тогда $\Pi = \mathbf{BrF}_5$. Проверим

m	М(Д), г/моль	n(Д), моль	$n(\Im Fn)/n(O_2)$
2	118	0,149	1,55
4	156	0.113	1,18
3	137	0.128	1,33

Cостав BrF₃ соответствует стехиометрии реакции

2.
$$A - ClF_5$$
, $B - ClF_3$, $B - ClF$, $\Gamma - BrF_5$, $\Pi - BrF_3$, $E - BrF_5$, $S - SiF_4$

3. Реакции:

 $SiO_2 + 4ClF = 2Cl_2 + SiF_4 + O_2$

 $3SiO_2 + 4ClF_3 = 2Cl_2 + 3SiF_4 + 3O_2$

 $5SiO_2 + 4ClF_5 = 2Cl_2 + 5SiF_4 + 5O_2$

 $SiO_2 + 4BrF = 2Br_2 + SiF_4 + O_2$

 $3SiO_2 + 4BrF_3 = 2Br_2 + 3SiF_4 + 3O_2$

 $5SiO_2 + 4BrF_5 = 2Br_2 + 5SiF_4 + 5O_2$

Критерии оценивания

- 1) За правильно установленные элементы X и Y по 1,5 балла 3 балла.
- 2) За правильно установленные соединения A-Ж по 2 балла (если не приведены расчеты по 1 баллу) 14 баллов,
- 3) За уравнения реакций A-E по 1 баллу (если написано с ошибками, но в целом верно, то 1 балл) 6 баллов.

Итого: 23 балла

ХИМИЯ 11 КЛАСС Вариант IV

Задача 1.

1. К примерам соединений, в которых по меньшей мере один элемент проявляет степень окисления +8, можно отнести: OsO₄, RuO₄, XeO₄, XeO₃F₂, перксенаты, ксеноновую кислоту и т.п. Также сообщалось о синтезе тетраоксидов FeO₄ и PuO₄, однако их существование и возможная степень окисления металлов в этих соединениях на данный момент являются предметом споров.

2.

Уравнение реакции	Окислитель	Восстановитель
$2AgF_2 + KrF_2 + 2KF = 2K[AgF_4] + Kr\uparrow$	Kr; от +2 до 0	Ag ²⁺ ; от +2 до +3
$2Cs[CuCl_3] + 5F_2 + 2CsF = 2Cs_2[CuF_6] + 3Cl_2 \uparrow$	F ₂ ; от 0 до -	Cu ²⁺ ; от +2 до +4
	1	и Cl ⁻ ; от -1 до 0
$NiCl_2 + 2F_2 + 2CsF = Cs_2[NiF_6] + Cl_2 \uparrow$	F ₂ ; от 0 до -	Ni^{2+} ; от $+2$ до $+4$
	1	и Cl- ; от -1 до 0
$Rb_2[CoCl_4] + 3F_2 = Rb_2[CoF_6] + 2Cl_2\uparrow$	F ₂ ; от 0 до -	$[\text{CoCl}_4]^{2-}$ (Co^{2+} ; or +2
	1	до +4 и Cl ⁻ ; от -1 до)

3. При взаимодействии 1-хлорнорборнана с металлическим литием происходит реакция переметаллирования, в результате чего образуется 1-норборниллитий $\underline{\mathbf{A}}$. Взаимодействие $\underline{\mathbf{A}}$ с дихлоридом кобальта приводит к диспропорционированию Co^{2+} на Co^{4+} и металлический кобальт, при этом образуется тетракис(1-норборнил)кобальт(IV) $\underline{\mathbf{B}}$. Окисление этого соединения тетрафтороборатом серебра сопровождается выделением металлического Ag и образованием соли $\underline{\mathbf{C}}$, в которой кобальт формально проявляет степень окисления +5.

$$+ 2Li = LiCI + A$$

$$+ 2CoCl2 = 4LiCI + Col + B$$

- 1. За правильно приведённые примеры соединений, в которых по меньшей мере один химический элемент проявляет степень окисления +8 по 1 баллу всего 2 балла.
- 2. За правильно заполненные пропуски в уравнениях реакций по 1 баллу (без коэффициентов по 0.5 балла) всего 4 балла.
- 3. За правильно указанные окислители и восстановители по 0,5 балла, за правильно указанные изменения ст.ок. по 0,5 балла всего 4 балла.
- 4. За установление структурных формул соединений А, В, С по 3 балла всего 9 баллов.
- 5. За уравнения реакций в пункте 3 задачи по 1 баллу всего 3 балла. Итого: 22 балла

Задача 2.

1. Восстановление амидов карбоновых кислот алюмогидридом лития приводит к образованию аминов.

2. Гидроборирование алкенов комплексом BH_3 и тетрагидрофурана с последующим окислением образующегося триалкилборана пероксидом водорода в щелочной среде приводит к образованию спирта, при этом ОН-группа связывается с наименее замещённым атомом углерода. Суммарно весь процесс можно представить как присоединение воды к алкену против правила Марковникова.

3. Взаимодействие алкенов с *мета*-хлорпероксибензойной кислотой (реакция Прилежаева) приводит к образованию соответствующих эпоксидов.

$$H_2C$$
 C
 C
 C
 C

4. Иодирование ароматических соединений в присутствии окислителей (HNO₃, HIO₄ и т.п.) протекает по механизму электрофильного ароматического замещения, при этом CH_3 -группа, как и в других подобных реакциях, ориентирует замещение в *орто*- и *пара*-положение. Окислитель в данной системе способствует генерации активной электрофильной частицы, а также смещению равновесия в сторону образования продуктов реакции, т.к. окисляет побочный продукт — HI. Преимущественно образуется пара-замещённый продукт.

5. Фотолитическое разложение диазометана сопровождается отщеплением молекулярного азота и образованием карбена :CH₂, который способен присоединяться к двойным связям алкенов с образованием циклопропанов.

$$C_4H_9$$

6. Ацетилениды меди в пиридине вступают с арилгалогенидами в реакцию кросссочетания (реакцию Стефенса-Кастро) с образованием новых С-С связей.

Критерии оценивания

- 1. За структурные формулы продуктов реакций 1-3 по 2 балла всего 6 баллов.
- 2. За структурные формулы продуктов реакций 4-6 по 4 балла всего 12 баллов.

Итого: 18 баллов

Задача 3.

1. Схема позитронного распада меди-64:

$$^{64}{}_{29}Cu \rightarrow {^{64}}_{28}Ni + {^{0}}_{+1}e + \nu_{e}$$

2. На основании приведенной реакции и структуры 64 Cu-ATSM можно сделать вывод о том, что 64 CuCl₂ и H₂-ATSM реагируют в эквимолярном соотношении. H₂-ATSM находится в избытке. Все вычисления проводим по 64 CuCl₂. Из закона радиоактивного распада несложно найти связь между постоянной распада и периодом полураспада (вывод формулы нахождения λ не оценивается):

$$\lambda = \ln 2/T_{1/2}$$

$$\lambda = \ln 2/(12,7*60*60) = 1,52*10^{-5} c^{-1}$$

По уравнению закона радиоактивного распада:

$$t = \ln(N_t/N_0)/(-\lambda)$$

Зная, что активность продукта реакции равна 560 МБк, найдем $N_t(^{64}Cu)$ (к моменту окончания фторирования):

$$\begin{split} N_t &= A_t \! / \lambda \\ N_t &= 560*10^6 \! / (1,\! 52*10^{\text -5}) = 3,\! 69*10^{13} \end{split}$$

Дальнейшие вычисления можно вести по-разному (с использованием молей, числа атомов и т.д.).

Найдем $N_0(^{64}Cu)$:

$$N = nN_A$$

 $N_0(^{64}Cu) = 0.0652*10^{-9}*6.02*10^{23} = 3.93*10^{13}$

Найдем время реакции t:

$$\begin{split} N_t &= N_0 exp(-\lambda t) \\ &\ln(N_t/N_0)/(-\lambda) = t \\ t &= \ln(3.69*10^{13}/(3.93*10^{13}))/(-1.52*10^{-5}) = 4005.8 \ c = 1.11 \ ч \end{split}$$

Исходная активность ⁶⁴Cu:

$$A_0 = 1,52*10^{-5}*3,93*10^{13} = 5,95*10^8\,\mathrm{K}$$

Количество вещества распавшегося ⁶⁴Си:

$$n_{\mathrm{pac} \mathrm{II}}(^{64}Cu) = (N_0 \text{-} N_t)/N_A = 3.84*10^{\text{-}12}$$
 моль

3. Схемы ядерных реакций:

228
₉₀Th $\rightarrow ^{224}$ ₈₈Ra + 4 ₂He
 2 ₁H + 3 ₂He $\rightarrow ^{1}$ ₁p + 4 ₂He
 1 ₁p + 11 ₅B $\rightarrow 3^{4}$ ₂He
hv + 9 ₄Be $\rightarrow ^{8}$ ₄Be + 1 ₀n

- 1. За схему позитронного распада меди-64 1 балл.
- 2. За определение времени синтеза (в час.), исходной активности 64Сu, количества вещества распавшегося 64Сu по 5 баллов всего 15 баллов.
- 3. За уравнения ядерных реакций по 1 баллу всего 4 балла.

Итого: 20 баллов

Задача 4.

Элемент Э очень распространен на нашей планете, образует большое число различных газов, таких элементов немного, один из таких -N (азот).

Соединение A — термически нестабильно, известна массовая доля - 36.8%, найдем молярную массу: 14n/0.368 = 38n, где n — количество азотов, при n = 2 молярная масса 76, вычтем массу двух азотов, остаток 48, что скорее всего соответствует трем кислородам, тогда A — N_2O_3 , навести на мысль, что это какой-то кислотный оксид также может то, что получающееся соединение Б потом реагирует с щелочью. Б - HNO_2 . В — NO (бесцветный газ) Г - $NaNO_2$. Рассчитаем молярную массу Y: 14n/0.824 = 17n, где n — количество азотов, при n = 1 остаток составляет 3, что соответствует Y — NH_3

Рассчитаем молярную массу X: 14n/0.201=69.5n, где n- количество азотов, как известно из условия, при n=1 масса остатка 55.5, такая масса сразу наводит на мысль о содержании хлора в соединении (также в условии сказано, что это соль сильной кислоты), вероятно, молекула содержит HCl, тогда масса остатка 19, вряд ли это фтор, гораздо логичнее предположить, что это три атома водорода и кислород, тогда изначально у нас был гидрохлорид гидроксиламмония, то есть $X-NH_2OH*HCl$

Газ Д - N_2O Е - HNO_3 , поскольку она может быть получена из азотистой кислоты Б при взаимодействии с пероксидом водорода. Ж - N_2O_5 Газ Д - N_2O . Простое вещество И – N_2

Э	A	Б	В	Γ	Д	E	Ж	3	И
N	N_2O_3	HNO ₂	NO	NaNO ₂	NaNO ₃	$H_2N_2O_2$	$Na_2N_2O_2$	N_2O	N_2
X	Y								
NH ₂ OH	NH ₃								

2.

Реакция 1:

 $N_2O_3 + H_2O_{(xол)} = 2HNO_2$

Реакция 2:

 $2HNO_2 + 2HI = I_2 + 2NO + 2H_2O$

Реакция 3:

 $HNO_2 + NaOH = NaNO_2 + H_2O$

Реакция 4:

 $NaNO_2 + NH_2OH * HCl = NaCl + H_2O + N_2O$

Реакция 5:

 $3N_2O_3 + H_2O = 2HNO_3 + 4NO$

Реакция 6:

 $HNO_2 + H_2O_2 = HNO_3 + H_2O$

Реакция 7:

 $4HNO_3 + P_4O_{10} = 2N_2O_5 + 4HPO_3$ (можно также написать H_3PO_4)

Реакция 8:

 $N_2O_5 + 2NH_3 + H_2O = 2NH_4NO_3$

 $3 - NH_4NO_3$

Реакция 9:

 $NH_4NO_3 = N_2O + 2H_2O$

Реакция 10:

 $3N_2O + 2NH_3 = N_2 + 3H_2O$

Критерии оценивания

- 1. За правильно установленный элемент 9 1.5 балла. За правильно установленные формулы A-И, X и Y по 0.5 баллов 7 баллов.
- 2. За уравнение реакции по 1 баллу (если написано с ошибками, но в целом верно, то по 0.5 баллов) 10 баллов.

Итого: 17 баллов

Задача 5.

1. В условии указано, что при взаимодействии A-E с SiO_2 образуется газ Ж, который содержит кремний. Таких газов немного. Предположим, что это SiF_4 , тогда соединения элемента X и элемента Y содержат фтор. Проверим свое предположение по массовой доле X в Б. Выразим молярную массу Б: M(Б) = 19n/(1-0.584) = 45.67n. В табл. Приведены значения молярных масс Б и X (Y) для разных n.

n	М(Б)	М(остатка)			
1	45,67	26,67			
2	91,34	53,34			
3	137,01	80,01 Br			
4	182,68	106,68			
5	228,35	133,35			
6	274,02	160,02			
7	319,69	186,69			

Тоже самое проведем с соединением Д:

 $M(\Pi) = 19n/(1-0.384) = 30.84n$

n	М(Б)	М(остатка)
1	30.84	11.84
2	61.68	23.68
3	92.52	35.52 Cl
4	123.36	47.36
5	154.2	59.20
6	185.04	71.04
7	215.88	82.88

Таким образом X - Br, Y - Cl. $B - BrF_3$, $A = ClF_3$

2. Реакция с SiO₂ в общем виде выглядит следующим образом:

$$nSiO_2 + 4\Im F_m = 2\Im_2 + SiF_4 + mO_2$$

Разложение пероксида бария:

 $2BaO_2 = 2BaO + O_2$

Соединение	Количество исходного	n(O ₂), моль	$n(\Im Fn)/n(O_2)$	
	соединения			
A	19.0 г	0,136		
BrF ₃	26.0 г	0,143		
В	19.1 г	0,048		
Γ	0.5 моль	0,125	4	
ClF ₃	0.133 моль	0,1	1,33	
E	0.056 моль	0,07	0,8	

Для Γ : m=1, т.е. Γ – ClF

Для E: 4/m=0.8; m=5; E $-ClF_5$

A и B могут иметь состав BrF и BrF₅

m	М (А), г/моль	n(A), моль	$n(\Im Fn)/n(O_2)$
1	99	0.19	1,4
5	175	0.066	0,8

Соответствует стехиометрии реакции BrF_5 , это A, тогда B = BrF. Проверим

	М(В), г/моль	n(B), моль	$n(\Im Fn)/n(O_2)$
2	118	0.162	3,37
1	99	0.192	4

Coctab BrF соответствует стехиометрии реакции

A – BrF₅, B – BrF₃, B – BrF,
$$\Gamma$$
 – ClF₃, Π – ClF₃, Π – ClF₅, Π – SiF₄

3. Реакции:

$$SiO_2 + 4ClF = 2Cl_2 + SiF_4 + O_2$$

$$3SiO_2 + 4ClF_3 = 2Cl_2 + 3SiF_4 + 3O_2$$

$$5SiO_2 + 4ClF_5 = 2Cl_2 + 5SiF_4 + 5O_2$$

$$SiO_2 + 4BrF = 2Br_2 + SiF_4 + O_2$$

$$3SiO_2 + 4BrF_3 = 2Br_2 + 3SiF_4 + 3O_2$$

$$5SiO_2 + 4BrF_5 = 2Br_2 + 5SiF_4 + 5O_2$$

Критерии оценивания

- 1) За правильно установленные элементы X и Y по 1,5 балла 3 балла.
- 2) За правильно установленные соединения А-Ж по 2 балла (если не приведены расчеты по 1 баллу) 14 баллов,
- 3) За уравнения реакций A-E по 1 баллу (если написано с ошибками, но в целом верно, то 1 балл) 6 баллов.

Итого: 23 балла