Химия. 8 класс

Вариант 1

- 1. Кристаллогидраты это кристаллы солей, содержащие молекулы воды. Они образуются, если в кристаллической решётке катионы более прочно связаны с молекулами воды, чем с анионами в кристалле безводного вещества. \mathbf{X} кристаллогидрат зеленого цвета, проявляет токсичные, канцерогенные и мутагенные свойства.
 - **1.** Установите химическую формулу вещества **X**, если в его состав помимо прочего входят сера и ион, имеющий электронную конфигурацию $[Ar]3d^8$. Известно также, что масса воды в нем больше массы металла в 2,15 раза.
 - **2.** 2 г **X** растворили в 8 моль воды. Рассчитайте массовую долю соли в полученном растворе.
 - **3.** При нагревании до 280 °C **X** теряет кристаллизационную воду с образованием вещества **Y** (реакция 1), которое разлагается свыше 700 °C (реакция 2), образуя при этом два оксида и одно простое вещество. Запишите уравнения упомянутых реакций. Предложите три способа получения вещества **Y**.

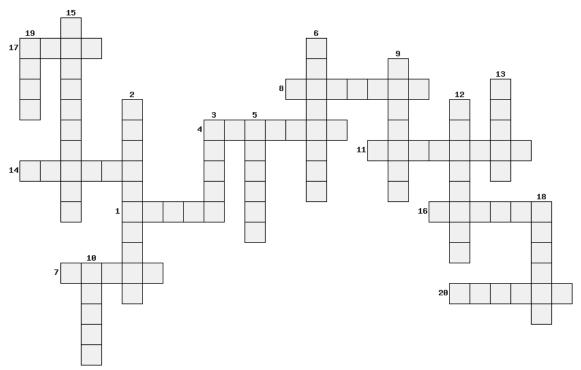
(20 баллов)

- 2. Химик Антон изучал научные статьи, в которых был описан синтез различных веществ. В свой блокнот он записал 10 различных уравнений реакций, но чернила от ручки испачкали все записи. Помогите Антону распознать уравнения реакций. Завершите эти уравнения, вставив пропущенные вещества и коэффициенты.
 - 1. $Cu(NO_3)_2 \rightarrow ... + NO_2 + O_2$
 - 2. FeS+... \rightarrow 2Fe₂O₃ + SO₂
 - 3. $S+... \rightarrow H_2SO_4 + NO_2 +...$
 - 4. $H_2S+... \rightarrow$ простое вещество +2HBr
 - 5. Ag+2 H_2SO_4 (конц.) $\rightarrow ...+SO_2 + 2H_2O$
 - 6. $Fe_3O_4+HCl \rightarrow FeCl_2+...+...$
 - 7. $Na[Al(OH)_4] + CO_2 \rightarrow NaHCO_3 + ...$
 - 8. $K_2ZnO_2+HCl \rightarrow ...+ZnCl_2+...$
 - 9. ...+ BaCl₂ \rightarrow BaCrO₄ + KCl
 - $10.PH_3+...+NaOH \rightarrow 8Na_2MnO_4+Na_3PO_4+...$

(20 баллов)

3. На карточках написаны следующие формулы:

 $oxed{P_4} oxed{ Cr^{5+} oxed{SO_4^{2-}} oxed{ C_{84} oxed{ IrO_2} oxed{OgF_4} oxed{ XeF_6} oxed{ Ag_2C_2} oxed{ Xe^{2+} oxed{ UO_2^{2+}}}$


1. Укажите какое суммарное количество электронов содержат следующие молекулы или ионы.

- **4.** Монета массой 3,6 г, состоящая из сплава меди с цинком, была погружена в раствор соляной кислоты, что привело к частичному её растворению (реакция 1). Оставшуюся часть монеты растворили в концентрированной H_2SO_4 , при этом выделилось 0,54 л газа \mathbf{X} (реакция 2). Объем газа \mathbf{X} был измерен при давлении 101,3 кПа и температуре 25 °C. Известно, что у газа \mathbf{X} наиболее ярко выражены восстановительные свойства: он способен вступать в реакцию с хлорной водой (CI_2+H_2O) (реакция 3), бромной водой (EI_2+H_2O) (реакция 5) и кислородом (EI_2+EI_2O) (реакция 5) и кислородом (EI_2+EI_2O) (реакция 6). Известно также, что в каждой из реакций 3-5 образуется две кислоты, причем одна из них серосодержащая.
 - 1. Рассчитайте массовые доли меди и цинка в монете;
 - 2. Напишите уравнения упомянутых химических реакций (реакции 1-6);
 - 3. Изобразите графическую формулу газа X.

Справочная информация: для нахождения объема выделившегося газа используйте уравнение Клапейрона-Менделеева pV=nRT, где n – количество моль, R – газовая постоянная 8,314 Дж/(моль·К), T – температура в Кельвинах ($T=T_0+A$; $T_0=273$ Кельвина; A – температура в градусах Цельсия), p – давление кПа, V – объем в л.

(20 баллов)

5. Используя подсказки, разгадайте кроссворд. Ответы запишите в формате «номер – слово».

- 1. Металл, который обладает наименьшей плотностью среди всех металлов, является мягким щелочным металлом серебристо-белого цвета.
- 2. Это сложный белок, содержащийся в эритроцитах (красных кровяных клетках), который отвечает за транспорт кислорода от легких к тканям и за транспортировку углекислого газа обратно к легким для выведения из организма.

- 3. Этот химический элемент назван в честь Пьера и Марии Кюри.
- 4. Химическое соединение, способное отдавать катион водорода.
- 5. Инструмент для измельчения и растирания чего-либо.
- 6. Субатомная частица, электрический заряд которой отрицателен и равен по модулю одному элементарному электрическому заряду. Имеет массу, которая составляет приблизительно 1/1836 массы протона.
- 7. Бинарное соединение химического элемента с кислородом в степени окисления –2.
 - 8. Тяжёлая элементарная частица, не имеющая электрического заряда.
- 9. Название этого химического элемента происходит от нем. Kobold домовой, гном.
- 10. Стеклянный сосуд с круглым или плоским дном, обычно с узким длинным горлом.
- 11. Этот металл используется в ядерном оружии и служит в качестве ядерного топлива. Оксиды этого металла используются в качестве энергетического источника для космической техники. Название химического элемента, образующего этот металл, связано с названием одной карликовой планеты.
- 12. Специализированный сосуд цилиндрической формы, имеющий полукруглое, коническое или плоское дно. Широко используется в химических лабораториях для проведения некоторых химических реакций в малых объемах, для отбора проб химических веществ.
- 13. Электронная конфигурация атома этого химического элемента может быть записана как [Xe] $6s^1$.
- 14. Считается, что этот металл составляет большую часть земного ядра, что проявляется в наличии магнитного поля Земли.
- 15. Процесс, состоящий в выделении на катоде и аноде составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор либо расплав электролита.
- 16. Частица, которая входит в состав атомных ядер; порядковый номер химического элемента в таблице Менделеева равен количеству этих частиц в его ядре.
- 17. Сложное вещество, состоящее из катиона металла и аниона кислотного остатка.
- 18. Мягкий, химически активный щелочной металл серебристо-белого цвета. Применяется в газоразрядных лампах, дающих ярко-жёлтый свет.
- 19. Светло-желтый порошкообразный неметалл, который применяют для вулканизации каучука.
- 20. Один из важных биогенных элементов, который входит в состав зеленого пигмента, окрашиващий хлоропалсты растений в зеленый цвет.

Периодическая система химических элементов Д.И. Менделеева

1	1 H																	18 2 He
	водород 1.007 94(7) З Li	4 Be		Условные обозн атомный но Симво	мер			s-элемен	ты [p	элементы		13 5 B	6 C	7 N	16 8 O	17 9 F	телий 4.002 602(2) 10 Ne
2	литий 6.941(2) 11	бериллий 9.012 182(3) 12		название относит, атомная в				d-элемен	ты [f-	элементы		6op 10.811(7)	углерод 12.0107(8)	азот 14.0067(2)	кислород 15.9994(3)	фтор 18.998 4032(5)	неон 20.1797(6)
3	Nа натрий 22.989 769 28(2)	Мg магний 24.3050(6)	3	4	5	6	7	8	9	10	11	12	АI алюминий 26.981 538 6(8)	Si кремний 28.0855(3)	Фосфор 30.973 762(2)	S cepa 32.065(5)	CI xnop 35.453(2)	Аг аргон 39.948(1)
4	19 К калий зв.0983(1)	20 Са кальций 40.078(4)	21 Sc скандий 44.955 912(6)	22 Ті титан 47.867(1)	23 V ванадий 50.9415(1)	24 Cr xpom 51.9961(6)	25 Mn марганец 54.938 045(5)	26 Fe железо 55.845(2)	27 Со кобальт 58.933 195(5)	28 Ni никель 58.6934(2)	29 Си медь 63.546(3)	30 Zn цинк 65.409(4)	31 Ga галлий 69.723(1)	32 Ge германий 72.64(1)	33 As мышьяк 74.921 60(2)	34 Se селен 78.96(3)	35 Вг бром 79.904(1)	36 Кг криптон 83.798(2)
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
6	рубидий 85.4678(3) СS	стронций 87.62(1) 56 Ва	иттрий 88.905.85(2) 57-71 лантан	цирконий 91.224(2) 72 Hf	ниобий 92.906.38(2) 73 Та	молибден 95.94(2) 74 W	технеций [97.9072] 75 Re	рутений 101.07(2) 76 Os	родий 102.905 50(2) 77 Ir	палладий 106.42(1) 78 Pt	79 Au	кадмий 112.411(8) 80 Hg	индий 114.818(3) 81	олово 118.710(7) 82 Рb	сурьма 121.760(1) 83 Ві	теллур 127.60(3) 84 Ро	иод 126.904.47(3) 85 At	ксенон 131.293(б) 86 Rn
	цезий 132.905 451 9(2) 87	барий 137.327(7) 88	и лантаноиды	гафний 178.49(2) 104	тантал 180.947 88(2) 105	вольфрам 183.84(1) 106	рений 186.207(1) 107	осмий 190.23(3) 108	иридий 192.217(3) 109	платина 195.084(9) 110	золото 196.966 569(4)	ртуть 200.59(2) 112	таллий 204.3833(2) 113	свинец 207.2(1) 114	висмут 208.980 40(1) 115	полоний [208.9824] 116	астат [209.9871]	радон [222.0176]
7	Fr франций (223)	Ra радий [226]	актиний и актиноиды	Rf резерфордий [261]	Db дубний [262]	Sg сиборгий [266]	Вh борий [264]	Нs хассий (277)	Мt мейтнерий (268)	Ds дармштадтий (271)	Rg рентгений	Сп коперниций (285)	Nh нихоний [286]	FI флеровий [289]	Мс московий [290]	LV ливерморий (293)	Т s теннессин [294]	О д оганесон (294)
·	ferol	(220)																(200)
			57 La лантан 138.905 47(7)	58 Се церий 140.116(1)	59 Pr празеодим 140.907 65(2)	60 Nd неодим 144.242(3)	61 Рт прометий [145]	62 Sm самарий 150.36(2)	63 Eu европий 151.964(1)	63 Gd гадолиний 157.25(3)	65 ТЬ тербий 158.925 35(2)	66 Dy диспрозий 162.500(1)	67 Но гольмий 164.930 32(2)	68 Er эрбий 167.259(3)	69 Тт тулий 168.934 21(2)	70 Yb иттербий 173.04(3)	71 Lu лютеций 174.967(1)	
			89 Ас актиний	90 Th торий	91 Ра	92 U уран	93 Np нептуний	94 Pu	95 Ат америций	96 Ст кюрий	97 Вk берклий	98 Cf калифорний	99 Es эйнштейний	100 Fm фермий	101 Md менделевий	102 No нобелий	103 Lr лоуренсий	

	РАСТВОРИМОСТЬ КИСЛОТ, СОЛЕЙ И ОСНОВАНИЙ В ВОДЕ																			
	H⁺	Li⁺	K⁺	Na⁺	NH ₄ ⁺	Ba ²⁺	Ca ²⁺	Mg ²⁺	Sr ²⁺	Al ³⁺	Cr ³⁺	Fe ²⁺	Fe ³⁺	Mn ²⁺	Zn ²⁺	Ag⁺	Hg ²⁺	Pb ²⁺	Sn ²⁺	Cu ²⁴
OH ⁻		P	P	P	P	P	M	Н	M	Н	Н	Н	Н	Н	Н	-	_	Н	Н	Н
F ⁻	P	M	P	P	P	M	Н	Н	Н	M	Н	Н	Н	P	P	P	-	Н	P	P
CI ⁻	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	Н	P	M	P	P
Br ⁻	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	Н	M	M	P	P
Γ	P	P	P	P	P	P	P	P	P	P	?	P	?	P	P	Н	Н	Н	M	?
S ²⁻	P	P	P	P	P	_	_	-	H	-	-	Н	_	H	H	Н	Н	Н	H	Н
HS ⁻	P	P	P	P	P	P	P	P	P	?	?	?	?	?	?	?	?	?	?	?
SO ₃ ²⁻	P	P	P	P	P	H	H	M	H	?	_	Н	?	?	M	Н	Н	Н	?	?
SO ₄ ²⁻	P	P	P	P	P	H	M	P	H	P	P	P	P	P	P	M	-	Н	P	P
HSO₄ ⁻	P	P	P	P	P	?	?	?	_	?	?	?	?	?	?	?	?	Н	?	?
NO ₃	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	-	P
NO ₂	P	P	P	P	P	P	P	P	P	?	?	?	?	?	?	M	?	?	?	?
PO ₄ ³⁻	P	Н	P	P	-	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
HPO ₄ ²⁻	P	?	P	P	P	H	H	M	H	?	?	Н	?	Н	?	?	?	M	H	?
H ₂ PO ₄	P	P	P	P	P	P	P	P	P	?	?	P	?	P	P	P	?	-	?	?
CO ₃ ²⁻	P	P	P	P	P	H	H	H	H	?	?	Н	-	Н	H	Н	Н	Н	?	Н
HCO ₃ -	P	P	P	P	P	P	P	P	P	?	?	P	?	?	?	?	?	P	?	?
CH ₃ COO [−]	P	P	P	P	P	P	P	P	P	-	P	P	-	P	P	P	P	P	-	P
SiO ₃ ²⁻	Н	Н	P	P	?	H	Н	Н	Н	?	?	Н	?	Н	Н	?	?	Н	?	?
MnO ₄ ⁻	P	P	P	P	P	P	P	P	P	P	?	?	?	?	P	?	?	?	?	?
Cr ₂ O ₇ ²⁻	P	P	P	P	P	M	P	?	Н	?	?	?	P	?	?	Н	Н	M	?	P
CrO ₄ ²⁻	P	P	P	P	P	H	P	P	Н	?	?	?	Н	Н	Н	Н	Н	Н	Н	Н
CIO ₃	P	P	P	P	P	P	P	P	P	P	P	?	?	P	P	P	P	P	?	P
CIO ₄ -	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	?	P

«М» – мало растворяется (от 0,1 г до 1 г на 100 г H_2O)

«Р» — растворяется (> 1 г на 100 г H_2O); «Н» — не растворяется (меньше 0,01 г на 1000 г воды); «-» – в водной среде разлагается

«?» – нет достоверных сведений о существовании соединений

РЯД АКТИВНОСТИ МЕТАЛЛОВ / ЭЛЕКТРОХИМИЧЕСКИЙ РЯД НАПРЯЖЕНИЙ Li Rb K Ba Sr Ca Na Mg Al Mn Zn Cr Fe Cd Co Ni Sn Pb (H2) Sb Bi Cu Hg Ag Pt Au

активность металлов уменьшается

Химия. 8 класс Вариант 2

- 1. Кристаллогидраты это кристаллы солей, содержащие молекулы воды. Они образуются, если в кристаллической решётке катионы более прочно связаны с молекулами воды, чем с анионами в кристалле безводного вещества. X кристаллогидрат розово-красного цвета, хорошо (но медленно) растворим в воде и используется в качестве пигмента для окрашивания стекла и керамики.
 - 1. Установите химическую формулу вещества \mathbf{X} , если в его состав помимо прочего входят сера и ион, имеющий электронную конфигурацию $[\mathbf{Ar}]\mathbf{3d}^7$. Известно также, что масса воды в нем больше массы металла в 2,14 раза.
 - 2. 3 г **X** растворили в 6 моль воды. Рассчитайте массовую долю соли в полученном растворе.
 - 3. При нагревании (420 °C) **X** полностью теряет кристаллизационную воду с образованием вещества **Y** (реакция 1), которое разлагается свыше 650 °C (реакция 2), образуя при этом двойной оксид (содержит металл со c.о +2 и +3), кислотный оксид и простое вещество. Запишите уравнения упомянутых реакций. Предложите три способа получения вещества **Y**.

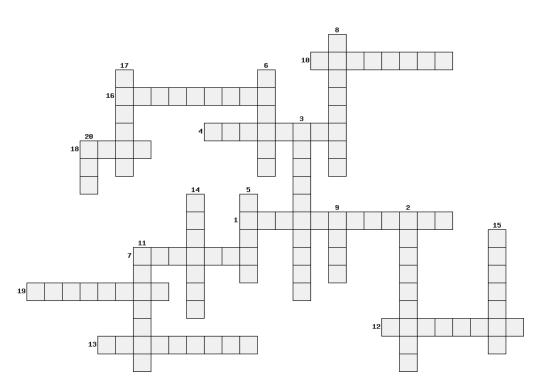
(20 баллов)

- **2.** Химик Антон изучал научные статьи, в которых был описан синтез различных веществ. В свой блокнот он записал 10 различных уравнений реакций, но чернила от ручки испачкали все записи. Помогите Антону распознать уравнения реакций. Завершите эти уравнения, вставив пропущенные вещества и коэффициенты.
 - 1. $MnO_2+...(конц) \rightarrow MnCl_2 + ...+...$
 - 2. $Fe(OH)_3+... \rightarrow ...+I_2+H_2O$
 - 3. $FeCl_2+KMnO_4+... \rightarrow ...+MnCl_2+KCl+...$
 - 4. $KOH + Cl_2 \rightarrow KClO_3 + ... +...$
 - 5. KI(тв)+ H_2SO_4 (конц) \rightarrow KHSO₄+...+ H_2S +...
 - 6. $KOH+PCl_5 \rightarrow ...+KCl+...$
 - 7. $Br_2+KOH \rightarrow ... + KBrO_3 + ...$
 - 8. $Ca_2Si + ... \rightarrow Ca(OH)_2 + SiH_4$
 - 9. CuS+ ... \rightarrow ... +H₂SO₄+NO₂+ ...
 - 10. Fe(OH)₂+ $H_2O_2 \rightarrow ...$

(20 баллов)

3. На карточках написаны следующие формулы:

 $oxed{S_8} oxed{ Cr^{3+} } oxed{ SO_3^{2-} } oxed{ C_{60} } oxed{ PtF_6} oxed{ Mc^{3+} } oxed{ XeF_2} oxed{ B_4C} oxed{ Xe^{6+} } oxed{ VO^{2+} }$


1. Укажите какое суммарное количество электронов содержат следующие молекулы или ионы

- **4.** Монета массой 2,1 г, состоящая из сплава меди с цинком, была погружена в раствор соляной кислоты, что привело к частичному её растворению (реакция 1). Оставшуюся часть монеты растворили в концентрированной H_2SO_4 , при этом выделилось 0,27 л газа \mathbf{X} (реакция 2). Объем газа \mathbf{X} был измерен при давлении 101,3 кПа и температуре 19 °C. Известно, что \mathbf{X} относится к кислотным оксидам и способен реагировать с гидроксидом натрия (реакция 3) и гидроксидом бария (реакция 4). Кроме того, у \mathbf{X} ярко выражены восстановительные свойства, он способен вступать в реакцию с хлорной водой (Cl_2+H_2O) (реакция 5) и бромной водой (Br_2+H_2O) (реакция 6). Известно также, что в ходе реакций 5 и 6 образуется по две кислоты, причем одна из них серосодержащая.
 - 1. Рассчитайте массовые доли меди и цинка в монете;
 - 2. Напишите уравнения упомянутых химических реакций (реакции 1-6)
 - 3. Изобразите графическую формулу газа X.

Справочная информация: для нахождения объема выделившегося газа используйте уравнение Клапейрона-Менделеева pV=nRT, где n – количество моль, R – газовая постоянная 8,314 Дж/(моль·К), T – температура в Кельвинах ($T=T_0+A$; $T_0=273$ Кельвина; A – температура в градусах Цельсия), p – давление кПа, V – объем в π .

(20 баллов)

5. Используя подсказки, разгадайте кроссворд. Ответы запишите в формате «номер – слово».

- 1. Обратимое изменение цвета при нагревании или охлаждении.
- 2. Соединение, позволяющее визуализировать изменение концентрации какого-либо вещества или компонента, например, быстро определить рН.
- 3. Переход вещества из твёрдого состояния сразу в парообразное, минуя стадию плавления.

- 4. Сложное химическое соединение, в котором атомы кислорода соединены друг с другом, в результате чего молекула кислорода в общем анионе O_2^{-2} имеет степень окисления -1.
- 5. Один из семи металлов, известных с древнейших времён, встречающийся в самородном виде (жидкие капли на горных породах), но чаще получаемый обжигом минерала киновари.
- 6. Гидроксиды щелочных, щелочноземельных металлов (кроме амфотерного гидроксида бериллия и обладающего слабыми основными свойствами гидроксида магния, они практически нерастворимы в воде) и таллия.
- 7. Название этого химического элемента происходит от нем. Kobold домовой, гном.
- 8. Этот элемент назван по имени астероида, открытого немецким астрономом Ольберсом в 1802 году.
- 9. Название этого металла произошло от греч. слова, означавшего цвет, краска, из-за разнообразия окраски соединений этого вещества.
- 10. Французский естествоиспытатель, который развил свою новую теорию окисления и горения, диаметрально противоположную по своим основаниям теории «флогистона», которая была тогда общепринятой.
 - 11. Белый песок + 2Mg = ... + 2MgO.
 - 12. Ионы этого металла окрашивают пламя в карминово-красный цвет.
- 13. Горелка для жидкого топлива, содержащая резервуар для спирта, снабжённая крышкой, через которую пропущен фитиль, нижний конец которого размещён в резервуаре, а верхний конец вне его.
- 14. Этот элемент образует соединения с красивой окраской, отсюда и название элемента, связанное с именем скандинавской богини любви и красоты Фрейи (др.-сканд. Vanadís дочь Ванов; Ванадис).
- 15. Электронная конфигурация атома этого химического элемента может быть записана как [Xe] $6s^24f^{11}$.
- 16. Сложное вещество, которое состоит из катиона металла и гидроксильной группы.
- 17. Этот элемент входит в состав всех важнейших биологически важных соединений: фосфолипидов, гидроксиаппатита (основа костной ткани и зубов), содержится в животных тканях, входит в состав белков (казеин) и других важнейших органических соединений (АТФ, ДНК), является элементом жизни.
- 18. Тяжёлая едкая жидкость красно-бурого цвета с сильным неприятным «тяжёлым» запахом.
- 19. Один из основных минералов этого металла пиролюзит, который использовался при варке стекла для его осветления.
- 20. Элемент, входящий в состав минералов: Основные минеральные формы бора: датолит, данбурит, бура, гидроборацит.

Периодическая система химических элементов Д.И. Менделеева

	1 Н водород 1.007 94(7) 3 Li литий 6.941(2) 11 Na	2 Ве бериллий в.ата тагат 12 Mg		Условные обознатомный но СИМВС название относит. этомная н	мер ОЛ			s-элемен d-элемен			-элементы элементы	13 5 B 60p 10.811(7) 13 Al	14 6 C yrnepon 12.0107(8) 14 Si	15 7 N a30T 14.0067(2) 15 P	16 8 О кислород 15,9994(3) 16 S	17 9 F	18 2 Не голий 4.002 602(2) 10 Nе неон 20.1787(6) 18 Ar	
22	натрий :989 769 28(2)	магний 24.3050(6)	3	4	5	6	7	8	9	10	11	12	алюминий 26.981 538 6(8)	кремний 28.0855(3)	фосфор 30.973 762(2)	cepa 32.065(5)	хлор 35.453(2)	аргон 39.948(1)
4	19 К калий 39.0983(1)	20 Са кальций 40.078(4)	21 SC скандий 44.955 912(6)	22 Ті титан 47.867(1)	23 V ванадий 50.9415(1)	24 Cr xpom 51.9961(6)	25 Mn марганец 54.938 045(5)	26 Fe железо 55.845(2)	27 Со кобальт 58.933 195(5)	28 Ni никель 58.6934(2)	29 Си медь 63.546(3)	30 Zn цинк 65.409(4)	31 Ga галлий 69.723(1)	32 Ge германий 72.64(1)	33 As мышьяк 74.921 60(2)	34 Se селен 78.96(3)	35 Br 6pom 79.904(1)	36 Кг криптон 83.798(2)
5	37 Rb рубидий	38 Sr стронций	39 Y иттрий	40 Zr ширконий	41 Nb ниобий	42 Мо молиблен	43 Тс технеций	44 Ru рутений	45 Rh	46 Pd	47 Ag	48 Сd кадмий	49 In индий	50 Sn	51 Sb сурьма	52 Те теллур	53 	54 Хе ксенон
	55 Сs цезий	87.62(1) 56 Ва барий	88.905.85(2) 57-71 лантан и лантаноиды	91.224(2) 72 Hf гафний	92.906.38(2) 73 Ta	95.94(2) 74 W	[97.9072] 75 Re	101.07(2) 76 Os	102.905 50(2) 77 Ir иридий	106.42(1) 78 Pt	107.8682(2) 79 Au	112.411(8) 80 Hg	114.818(3) 81 ТI	118.710(7) 82 Рb	121.760(1) 83 Bi	127.60(3) 84 Ро	126.904 47(3) 85 At	131.293(б) 86 Rn
7	87 Fr	137.327(7) 88 Ra	89-103 актиний и актиноиды	178.49(2) 104 Rf	180.947 88(2) 105 Db	183.84(1) 106 Sg	186.207(1) 107 Bh	190.23(3) 108 Hs	192.217(3) 109 Mt	195.084(9) 110 DS	196.966 569(4) 111 Rg	200.59(2) 112 Cn	204.3833(2) 113 Nh	207.2(1) 114 FI	208.980 40(1) 115 MC	(208.9824) 116 Lv	117 Ts	118 Og
	франций (223)	радий (226)		резерфордий [261]	дубний [262]	сиборгий [266]	борий (264)	хассий (277)	мейтнерий (268)	дармштадтий {271}	рентгений [272]	коперниций (285)	нихоний [286]	флеровий [289]	МОСКОВИЙ [290]	ливерморий [293]	теннессин [294]	оганесон {294}
			57	58	59	60	61	62	63	63	65	66	67	68	69	70	71	1
			La лантан 138.905 47(7)	Се церий 140.116(1)	Pr празеодим 140.907 65(2)	Nd неодим 144.242(3)	Рт прометий [145]	Sm самарий 150.36(2)	Е и европий 151.964(1)	Gd гадолиний 157.25(3)	Тb тербий 158.925 35(2)	Dy диспрозий 162.500(1)	Но гольмий 164.930 32(2)	Er эрбий 167.259(3)	Тт тулий 168.934 21(2)	Yb иттербий 173.04(3)	Lu лютеций 174.967(1)	
			89 АС актиний (227)	90 Th торий 232.038 06(2)	91 Ра протактиний 231.035 88(2)	92 U ypaH 238.028 91(3)	93 Np нептуний [237]	94 Pu плутоний (244)	95 Ат америций (243)	96 Ст кюрий [247]	97 Вк берклий [247]	98 Cf калифорний [251]	99 Es эйнштейний (252)	100 Fm фермий (257)	101 Md менделевий [258]	102 No нобелий (259)	103 Lr лоуренсий (262)	

	РАСТВОРИМОСТЬ КИСЛОТ, СОЛЕЙ И ОСНОВАНИЙ В ВОДЕ																			
	H⁺	Li⁺	K⁺	Na⁺	NH ₄ ⁺	Ba ²⁺	Ca ²⁺	Mg ²⁺	Sr ²⁺	Al ³⁺	Cr ³⁺	Fe ²⁺	Fe ³⁺	Mn ²⁺	Zn ²⁺	Ag⁺	Hg ²⁺	Pb ²⁺	Sn ²⁺	Cu ²⁺
OH ⁻		P	P	P	P	P	M	Н	M	Н	Н	Н	Н	Н	Н	-	_	Н	Н	Н
F ⁻	P	M	P	P	P	M	Н	Н	Н	M	Н	Н	Н	P	P	P	-	Н	P	P
CI ⁻	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	Н	P	M	P	P
Br ⁻	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	Н	M	M	P	P
Γ	P	P	P	P	P	P	P	P	P	P	?	P	?	P	P	Н	Н	H	M	?
S ²⁻	P	P	P	P	P	_	-	-	Н	-	-	Н	-	Н	Н	Н	Н	Н	Н	Н
HS ⁻	P	P	P	P	P	P	P	P	P	?	?	?	?	?	?	?	?	?	?	?
SO ₃ ²⁻	P	P	P	P	P	Н	Н	M	Н	?	-	Н	?	?	M	Н	Н	Н	?	?
SO ₄ ²⁻	P	P	P	P	P	Н	M	P	Н	P	P	P	P	P	P	M	-	Н	P	P
HSO₄ ⁻	P	P	P	P	P	?	?	?	-	?	?	?	?	?	?	?	?	Н	?	?
NO ₃	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	-	P
NO ₂	P	P	P	P	P	P	P	P	P	?	?	?	?	?	?	M	?	?	?	?
PO ₄ ³⁻	P	Н	P	P	-	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
HPO ₄ ²⁻	P	?	P	P	P	Н	Н	M	Н	?	?	Н	?	Н	?	?	?	M	Н	?
H ₂ PO ₄	P	P	P	P	P	P	P	P	P	?	?	P	?	P	P	P	?	-	?	?
CO ₃ ²⁻	P	P	P	P	P	Н	Н	Н	Н	?	?	Н	-	Н	Н	Н	Н	Н	?	Н
HCO ₃ ⁻	P	P	P	P	P	P	P	P	P	?	?	P	?	?	?	?	?	P	?	?
CH ₃ COO [−]	P	P	P	P	P	P	P	P	P	-	P	P	-	P	P	P	P	P	-	P
SiO ₃ ²⁻	Н	Н	P	P	?	Н	Н	Н	Н	?	?	Н	?	Н	Н	?	?	Н	?	?
MnO ₄	P	P	P	P	P	P	P	P	P	P	?	?	?	?	P	?	?	?	?	?
Cr ₂ O ₇ ²⁻	P	P	P	P	P	M	P	?	Н	?	?	?	P	?	?	Н	Н	M	?	P
CrO ₄ ²⁻	P	P	P	P	P	Н	P	P	Н	?	?	?	Н	Н	Н	Н	Н	H	Н	Н
CIO ₃	P	P	P	P	P	P	P	P	P	P	P	?	?	P	P	P	P	P	?	P
CIO ₄ -	P	P	P	P	P	P	P	P	P	P	P	P	Р	P	Р	P	P	Р	9	P

[«]Р» – растворяется (> 1 г на 100 г H₂O);

РЯД АКТИВНОСТИ МЕТАЛЛОВ / ЭЛЕКТРОХИМИЧЕСКИЙ РЯД НАПРЯЖЕНИЙ Li Rb K Ba Sr Ca Na Mg Al Mn Zn Cr Fe Cd Co Ni Sn Pb (H₂) Sb Bi Cu Hg Ag Pt Au

активность металлов уменьшается

[«]М» – мало растворяется (от 0,1 г до 1 г на 100 г H_2O)

[«]Н» – не растворяется (меньше 0,01 г на 1000 г воды); «–»

^{«-» -} в водной среде разлагается

^{«?» –} нет достоверных сведений о существовании соединений

Химия. 8 класс Вариант 3

- Кристаллогидраты это кристаллы солей, содержащие молекулы воды.
 Они образуются, если в кристаллической решётке катионы более прочно связаны с молекулами воды, чем с анионами в кристалле безводного вещества.
 Х кристаллогидрат синего цвета, хорошо растворим в воде и обладает дезинфицирующими, антисептическими и вяжущими свойствами.
 - **1.** Установите химическую формулу вещества **X**, если в его состав помимо прочего входят сера и ион, имеющий электронную конфигурацию $[Ar]3d^9$. Известно также, что масса воды в нем больше массы металла в 1,4 раза.
 - **2.** 3 г **X** растворили в 8 моль воды. Рассчитайте массовую долю соли в полученном растворе.
 - **3.** При нагревании (258 °C) **X** теряет кристаллизационную воду с образованием вещества **Y** (реакция 1), которое разлагается свыше 650 °C (реакция 2), образуя при этом два оксида и одно простое вещество. Запишите уравнения упомянутых реакций. Предложите три способа получения вещества **Y**.

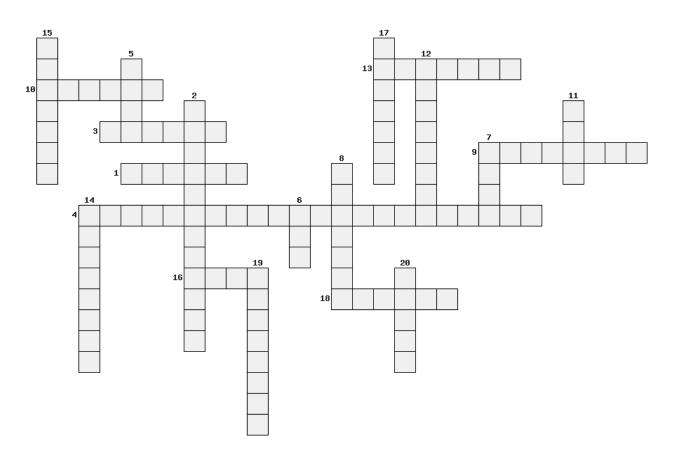
(20 баллов)

- **2.** Химик Антон изучал научные статьи, в которых был описан синтез различных веществ. В свой блокнот он записал 10 различных уравнений реакций, но чернила от ручки испачкали все записи. Помогите Антону распознать уравнения реакций. Завершите эти уравнения, вставив пропущенные вещества и коэффициенты.
 - 1. $I_2 + ... \rightarrow NaIO_3 + ... + ...$
 - 2. $2ZnS+...\rightarrow 2ZnO + ...$
 - 3. $NaNO_2+NH_4I \rightarrow ... + N_2 +...$
 - **4.** $H_2O_2 + ... \rightarrow Ag + O_2 + ...$
 - 5. ...+KMnO₄+... \rightarrow K₂MnO₄+NaNO₃+H₂O
 - **6.** $K[Al(OH)_4] + SO_2 \rightarrow KHSO_3 + ...$
 - 7. $Br_2+K_2SO_3+NaOH \rightarrow ...+K_2SO_4 + ...$
 - **8.** P + HNO₃ \rightarrow H₃PO₄ + ... +H₂O
 - **9.** $Ca_3P_2+... \to ... + 2PH_3$
 - $\textbf{10.}...+Na_2S+...\rightarrow Al(OH)_3+...+NaI$

(20 баллов)

3. На карточках написаны следующие формулы:

 Cl_2 Dy^{3+} $NO_3^ C_{540}$ SF_6 Cn^{2+} ClF_5 LiF NF_4^+ MoO_2^{2+}


1. Укажите какое суммарное количество электронов содержат следующие молекулы или ионы

- **4.** Монета массой 2 г, состоящая из сплава меди с никелем, была погружена в раствор соляной кислоты, что привело к частичному её растворению (реакция 1). Оставшуюся часть монеты растворили в концентрированной H_2SO_4 , при этом выделилось 0,289 л газа **X** (реакция 2). Объем газа **X** был измерен при давлении 101,3 кПа и температуре 30 °C. Известно, что **X** относится к кислотным оксидам и способен реагировать с гидроксидом калия (реакция 3) и оксидом кальция (реакция 4). Кроме того, у **X** ярко выражены восстановительные свойства, он способен вступать в реакцию с хлорной водой (Cl_2+H_2O) (реакция 5) и бромной водой (Br_2+H_2O) (реакция 6). Известно также, что в ходе реакций 5 и 6 образуется по две кислоты, причем одна из них серосодержащая.
 - 1. Рассчитайте массовые доли меди и никеля в монете;
 - 2. Напишите уравнения упомянутых химических реакций (реакции 1-6);
 - 3. Изобразите графическую формулу газа X.

Справочная информация: для нахождения объема выделившегося газа используйте уравнение Клапейрона-Менделеева pV=nRT, где n- количество моль, R- газовая постоянная 8,314 Дж/(моль·К), T- температура в Кельвинах ($T=T_0+A$; $T_0=273$ Кельвина; A- температура в градусах Цельсия), p- давление кПа, V- объем в л.

(20 баллов)

5. Используя подсказки, разгадайте кроссворд. Ответы запишите в формате «номер – слово».

- 1. $As_2O_3 + 3C \rightarrow 2... + 3CO$.
- 2. Процесс разделения неоднородных систем при помощи пористых перегородок, пропускающих дисперсионную среду и задерживающих дисперсную твёрдую фазу.
 - 3. Самый лёгкий изотоп водорода.
- 4. Количественная характеристика способности атомов в химическом соединении смещать в свою сторону электроны.
- 5. Ядовитый удушающий двухатомный газ желтовато-зелёного цвета, тяжелее воздуха, с резким запахом и сладковатым.
 - 6. Атом или соединение нескольких атомов, которое имеет электрический заряд.
- 7. Твёрдый пористый продукт серого цвета, получаемый путём коксования каменного угля при температурах 950-1100 °C без доступа кислорода в течение 14-18 часов.
- 8. Электронная конфигурация атома этого химического элемента может быть записана как [Xe] $4f^{14}5d^96s^1$.
- 9. Химически активный неметалл, является самым лёгким элементом из группы халькогенов.
- 10. Нагревательное устройство, предназначенное для нагрева чего-либо до заданной, обычно высокой температуры. Название этого устройства произошло от позднелатинского слова *muffla*.
- 11. Является моноизотопным элементом: в природе существует только один стабильный изотоп с массовым числом 19.
- 12. Область околоядерного пространства, в которой вероятность нахождения электрона более 90 %.
- 13. Разновидности атомов (и ядер) какого-либо химического элемента, которые имеют одинаковый атомный номер.
- 14. Субатомная частица (обозначается символом е или β), чей электрический заряд отрицателен и равен по модулю одному элементарному электрическому заряду.
- 15. Широко распространённый минерал железа Fe_2O_3 , одна из главнейших железных руд.
- 16. Химически неделимая и наименьшая частица химического элемента, носитель его свойств.
- 17. Соединения азота с менее электроотрицательными элементами, например, с металлами и с рядом неметаллов.
 - 18. Нитрид водорода.
- 19. $FeO \cdot Fe_2O_3$ широко распространённый минерал чёрного цвета из класса оксидов, природный оксид железа (II,III).
- 20. Металл получил своё название в честь титанов, персонажей древнегреческой мифологии, детей Геи.

Периодическая система химических элементов Д.И. Менделеева

1	1 1 H																	18 2 He
	водород 1.007 94(7)	2		Условные обозн	Innovier:			-	-				13	14	15	16	17	гелий 4.002 602(2)
	3 Li	Be	l i	атомный но	мер			s-элемен	ты	р	-элементы		5 B	6 C	N N	8	9 F	10 Ne
2	литий	бериллий		Симво				1					бор	углерод	азот	кислород	фтор	неон
-	6.941(2)	9.012 182(3)		относит, атомная в				<i>d</i> -элемен	ты	f-	элементы		10.811(7)	12.0107(8)	14.0067(2)	15.9994(3)	18.998 4032(5)	20.1797(6)
3	Na	Mg											Al	Si	P	S	CI	Ar
	натрий 22.989 769 28(2)	магний 24.3050(6)	3	4	5	6	7	8	9	10	11	12	алюминий 26.981 538 6(8)	кремний 28.0855(3)	фосфор 30.973 762(2)	cepa 32.065(5)	хлор 35.453(2)	аргон 39.948(1)
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	К калий	Са кальций	Sc скандий	Ті титан	V ванадий	Сг	Mn марганец	Fe железо	Со кобальт	Ni никель	Си	Zn цинк	Ga галлий	Ge германий	As мышьяк	Se селен	Вг бром	Kr криптон
ł	39.0983(1)	40.078(4)	44.955 912(6)	47.867(1)	50.9415(1)	51.9961(6)	54.938 045(5)	55.845(2)	58.933 195(5)	58.6934(2)	63.546(3)	65.409(4)	69.723(1)	72.64(1)	74.921 60(2)	78.96(3)	79.904(1)	83.798(2)
5	Rb	Sr	Ÿ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Āg	Cd	În	Sn	Sb	Te	ĩ	Хe
	рубидий 85.4678(3)	стронций 87.62(1)	иттрий 88.905.85(2)	цирконий 91,224(2)	ниобий 92.906.38(2)	молибден 95.94(2)	технеций [97.9072]	рутений 101.07(2)	родий 102.905 50(2)	палладий 106.42(1)	серебро 107.8682(2)	кадмий 112.411(8)	индий 114.818(3)	олово 118.710(7)	сурьма 121.760(1)	теллур 127.60(3)	иод 126.904.47(3)	ксенон 131,293(б)
	55 Cs	56 Ba	57-71	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	Po Po	85 At	86 Rn
6	цезий	барий	лантан и лантаноиды	гафний	тантал	вольфрам	рений	осмий	иридий	платина	золото	ртуть	таллий	свинец	висмут	полоний	астат	радон
-	132.905 451 9(2)	137.327(7)	89-103	178.49(2)	180.947 88(2)	183.84(1)	186.207(1)	190.23(3)	192.217(3)	195.084(9)	196.966 569(4)	200.59(2)	204.3833(2)	207.2(1)	208.980 40(1)	[208.9824]	[209.9871]	[222.0176]
7	Fr	Ra	актиний	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
2250	франций (223)	радий [226]	и актиноиды	резерфордий [261]	дубний [262]	сиборгий [266]	борий (264)	хассий (277)	мейтнерий (268)	дармштадтий [271]	рентгений [272]	коперниций (285)	нихоний [286]	флеровий (289)	МОСКОВИЙ [290]	ливерморий [293]	теннессин [294]	оганесон (294)
	10004																100000	
			57	58	59	60	61	62	63	63	65	66	67	68	69	70	71	
			La лантан	Се	Pr празеодим	Nd неодим	Pm прометий	Sm самарий	Eu европий	Gd гадолиний	Т b тербий	Dy диспрозий	Но гольмий	Er эрбий	Тт тулий	Уb иттербий	Lu лютеций	
			138.905 47(7)	140.116(1)	140.907 65(2)	144.242(3)	[145]	150.36(2)	151.964(1)	157.25(3)	158.925 35(2)	162.500(1)	164.930 32(2)	167.259(3)	168.934 21(2)	173.04(3)	174.967(1)	
			89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	
			актиний [227]	торий 232.038 06(2)	протактиний 231.035 88(2)	уран 238.028 91(3)	нептуний [237]	плутоний [244]	америций [243]	кюрий [247]	берклий [247]	калифорний [251]	эйнштейний [252]	фермий [257]	менделевий [258]	нобелий (259)	лоуренсий (262)	

	РАСТВОРИМОСТЬ КИСЛОТ, СОЛЕЙ И ОСНОВАНИЙ В ВОДЕ																			
	H⁺	Li⁺	K⁺	Na⁺	NH ₄ ⁺	Ba ²⁺	Ca ²⁺	Mg ²⁺	Sr ²⁺	Al ³⁺	Cr ³⁺	Fe ²⁺	Fe ³⁺	Mn ²⁺	Zn ²⁺	Ag⁺	Hg ²⁺	Pb ²⁺	Sn ²⁺	Cu ²⁺
OH ⁻		P	P	P	P	P	M	Н	M	Н	Н	Н	Н	Н	Н	-	_	Н	Н	Н
F ⁻	P	M	P	P	P	M	Н	Н	Н	M	Н	Н	Н	P	P	P	-	Н	P	P
CI ⁻	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	Н	P	M	P	P
Br ⁻	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	Н	M	M	P	P
Γ	P	P	P	P	P	P	P	P	P	P	?	P	?	P	P	Н	Н	H	M	?
S ²⁻	P	P	P	P	P	_	-	-	Н	-	-	Н	-	Н	Н	Н	Н	Н	Н	Н
HS ⁻	P	P	P	P	P	P	P	P	P	?	?	?	?	?	?	?	?	?	?	?
SO ₃ ²⁻	P	P	P	P	P	Н	Н	M	Н	?	-	Н	?	?	M	Н	Н	Н	?	?
SO ₄ ²⁻	P	P	P	P	P	Н	M	P	Н	P	P	P	P	P	P	M	-	Н	P	P
HSO₄ ⁻	P	P	P	P	P	?	?	?	-	?	?	?	?	?	?	?	?	Н	?	?
NO ₃	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	-	P
NO ₂	P	P	P	P	P	P	P	P	P	?	?	?	?	?	?	M	?	?	?	?
PO ₄ ³⁻	P	Н	P	P	-	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
HPO ₄ ²⁻	P	?	P	P	P	Н	Н	M	Н	?	?	Н	?	Н	?	?	?	M	Н	?
H ₂ PO ₄	P	P	P	P	P	P	P	P	P	?	?	P	?	P	P	P	?	-	?	?
CO ₃ ²⁻	P	P	P	P	P	Н	Н	Н	Н	?	?	Н	-	Н	Н	Н	Н	Н	?	Н
HCO ₃ ⁻	P	P	P	P	P	P	P	P	P	?	?	P	?	?	?	?	?	P	?	?
CH ₃ COO [−]	P	P	P	P	P	P	P	P	P	-	P	P	-	P	P	P	P	P	-	P
SiO ₃ ²⁻	Н	Н	P	P	?	Н	Н	Н	Н	?	?	Н	?	Н	Н	?	?	Н	?	?
MnO ₄	P	P	P	P	P	P	P	P	P	P	?	?	?	?	P	?	?	?	?	?
Cr ₂ O ₇ ²⁻	P	P	P	P	P	M	P	?	Н	?	?	?	P	?	?	Н	Н	M	?	P
CrO ₄ ²⁻	P	P	P	P	P	Н	P	P	Н	?	?	?	Н	Н	Н	Н	Н	H	Н	Н
CIO ₃	P	P	P	P	P	P	P	P	P	P	P	?	?	P	P	P	P	P	?	P
CIO ₄ -	P	P	P	P	P	P	P	P	P	P	P	P	Р	P	Р	P	P	Р	9	P

[«]Р» – растворяется (> 1 г на 100 г H₂O);

РЯД АКТИВНОСТИ МЕТАЛЛОВ / ЭЛЕКТРОХИМИЧЕСКИЙ РЯД НАПРЯЖЕНИЙ

Li Rb K Ba Sr Ca Na Mg Al Mn Zn Cr Fe Cd Co Ni Sn Pb (H₂) Sb Bi Cu Hg Ag Pt Au активность металлов уменьшается

[«]М» – мало растворяется (от 0,1 г до 1 г на 100 г H_2O)

[«]Н» – не растворяется (меньше $0.01~\Gamma$ на $1000~\Gamma$ воды); «—» – в водной среде разлагается

^{«?» –} нет достоверных сведений о существовании соединений

Химия. 8 класс Вариант 4

Задание 1.

Кристаллогидраты — это кристаллы солей, содержащие молекулы воды. Они образуются, если в кристаллической решётке катионы более прочно связаны с молекулами воды, чем с анионами в кристалле безводного вещества. \mathbf{X} — кристаллогидрат светлого голубоватозелёного цвета, хорошо растворим в воде и применяется в текстильной промышленности, в сельском хозяйстве как фунгицид, для приготовления минеральных красок.

- **1.** Установите химическую формулу вещества **X**, если в его состав помимо прочего входят сера и ион, имеющий электронную конфигурацию $[Ar]3d^6$. Известно также, что масса воды в нем больше массы металла в 2,26 раз.
- **2.** 1 г **X** растворили в 4 моль воды. Рассчитайте массовую долю соли в полученном растворе.
- **3.** При длительном стоянии на воздухе **X** может полностью терять кристаллизационную воду с образованием вещества **Y** (реакция 1), которое разлагается свыше 480 °C (реакция 2), образуя при этом два оксида, причем один из содержит неметалл, и одно простое вещество. Запишите уравнения упомянутых реакций. Предложите три способа получения вещества **Y**.

(18 баллов)

Задание 2.

Химик Антон изучал научные статьи, в которых был описан синтез различных веществ. В свой блокнот он записал 10 различных уравнений реакций, но чернила от ручки испачкали все записи. Помогите Антону распознать уравнения реакций. Завершите эти уравнения, вставив пропущенные вещества и коэффициенты.

- 1. $HI+KHCO_3 \rightarrow ... + ... + CO_2$
- 2. $Fe_3O_4 + ... \rightarrow Fe(NO_3)_3 + ... + H_2O$
- 3. $Na_2O_2+HCl \rightarrow ...+H_2O+Cl_2$
- **4.** $3Cl_2 + KOH + Cr_2O_3 \rightarrow ... + 6KCl + ...$
- 5. $KOH + S \rightarrow ... + ... + 3H_2O$
- **6.** $Na_2[Zn(OH)_4] \rightarrow Na_2ZnO_2 + \dots$
- 7. $Cu_2O + ... \rightarrow 2CuSO_4 + SO_2 + ...$
- **8.** ... + HNO₃ \rightarrow Ag₂SO₄ + NO₂ + ...
- 9. ... $+C+SiO_2 \rightarrow P+5CO + CaSiO_3$
- $\textbf{10.}Mg_3N_2+\ldots \rightarrow \ldots + NH_3$

Задание 3

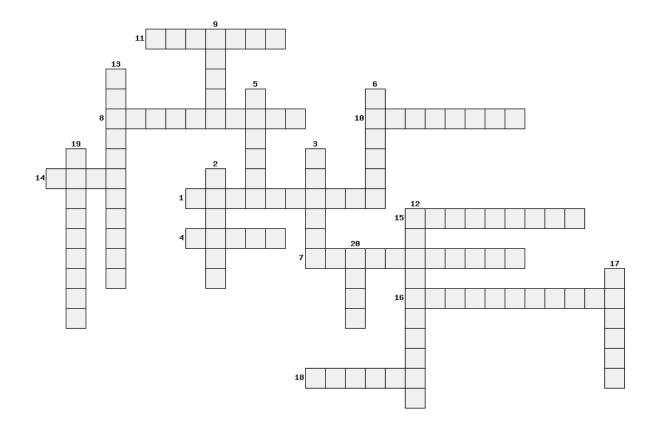
На карточках написаны следующие формулы:

Укажите какое суммарное количество электронов содержат следующие молекулы или ионы

(20 баллов)

Задание 4

Монета массой 1,5 г, состоящая из сплава меди с никелем, была погружена в раствор соляной кислоты, что привело к частичному её растворению (реакция 1). Оставшуюся часть монеты растворили в концентрированной H_2SO_4 , при этом выделилось 0,18 л газа \mathbf{X} (реакция 2). Объем газа \mathbf{X} был измерен при давлении 101,3 кПа и температуре 24 °C. Известно, что \mathbf{X} относится к кислотным оксидам и способен реагировать с гидроксидом лития (реакция 3) и оксидом магния (реакция 4). Кроме того, у \mathbf{X} ярко выражены восстановительные свойства, он способен вступать в реакцию с иодной водой (I_2+H_2O) (реакция 5) и хлорной водой (Br_2+H_2O) (реакция 6). Известно также, что в ходе реакций 5 и 6 образуется по две кислоты, причем одна из них серосодержащая.


- 1. Рассчитайте массовые доли меди и никеля в монете;
- 2. Напишите уравнения упомянутых химических реакций (реакции 1-6)
- 3. Изобразите графическую формулу газа X.

Справочная информация: для нахождения объема выделившегося газа используйте уравнение Клапейрона-Менделеева pV=nRT, где n-количество моль, R-газовая постоянная 8,314~Дж/(моль·K), T- температура в Кельвинах ($T=T_0+A$; $T_0=273~\text{Кельвина}$; A-температура в градусах Цельсия), p-давление кПа, V- объем в л.

(20 баллов)

Задание 5

Используя подсказки, разгадайте кроссворд. Ответы запишите в формате «номер – слово».

- 1. Этот элемент назван в честь Калифорнийского университета в Беркли, где и был синтезирован.
- 2. Поль Эмиль Лекок де Буабодран назвал элемент в честь своей родины Франции, по её латинскому названию Gallia.
- 3. Строка периодической системы химических элементов, последовательность атомов по возрастанию заряда ядра и заполнению электронами внешней электронной оболочки, где в каждый период входят элементы с одинаковым количеством электронных оболочек.
- 4. Минерал, кубическая аллотропная форма углерода.
- 5. Гидроксиды щелочных, щелочноземельных металлов (кроме амфотерного гидроксида бериллия и обладающего слабыми основными свойствами гидроксида магния, они практически нерастворимы в воде) и таллия.
- 6. $MgCl_2$ (электролиз) = металл и неметалл.
- 7. Способ разделения жидких смесей, основанный на значительной разнице температуры кипения компонентов смеси.
- 8. Химические элементы 15-й группы периодической таблицы химических элементов.
- 9. Электронная конфигурация атома этого химического элемента может быть записана как $[Kr]4d^{10}5s^25p^2$.
- 10.Название этого элемента образовалось от латинского «alumen» , что означает квасцы.
- 11. Электронная конфигурация атома этого химического элемента может быть записана как $[Xe]6s^24f^7$.

- 12.Химические элементы 16-й группы периодической таблицы химических элементов.
- 13. Процесс частичного удаления растворителя из раствора при нагревании.
- 14.Сложные вещества, состоящие из катионов металлов и анионов кислотных остатков.
- 15.Боязнь химических соединений, одна из форм технофобии и страха неизвестности. Обычно она проявляется в форме предубеждения против «химии», под которой понимаются продукты (обычно косметика либо пищевые продукты), произведённые человеком в промышленных условиях.
- 16. Химическое вещество, ускоряющее реакцию, но не расходующееся в процессе реакции.
- 17. Столбец химических элементов, имеющих сходные свойства.
- 18. Частица атомного ядра, имеющая положительный заряд.
- 19.Первый крупный русский учёный-естествоиспытатель, является основоположником научного мореплавания и физической химии; заложил основы науки о стекле.
- 20. Этот элемент входит в состав таких минералов как пирит, сфалерит, киноварь, ковелин, халькозин, халькопирит.