Task 1. Сколькими способами из множества $\{1, 2, 3, ..., 2024\}$ можно выбрать n чисел так, чтобы сумма любых m (произвольное натуральное число, меньшее n) из выбранных чисел не делилась на 3? Рассмотрите все возможные $n \geq 2$.

Answer:
$$2 \cdot C_{675}^2 + 2 \cdot C_{675}^3 + 675^2 = 2 \cdot C_{676}^3 + 675^2 = 102971025$$

Решение (RUS). Сначала докажем, что из любых трех целых чисел можно выбрать такие, сумма которых кратна 3 – для этого достаточно рассмотреть только их остатки при делении на 3. Если среди этих чисел есть кратное 3, то его одного достаточно; если все числа некратны 3, то либо они дают равные остатки при делении на 3 (1,1,1 или 2,2,2 – в таком случае берем все 3 числа), либо два дают равные остатки, а третье – другой остаток (2,2,1 или 1,1,2 – в таком случае берем два числа с различными остатками). Утверждение доказано.

Из доказанного следует, что $n \leq 3$, а из условия следует, что $n \geq 2$. Также отметим, что среди элементов множества $\{1,2,\ldots,2024\}$ есть по 675 дающих остатки 1 и 2 при делении на 3 (далее вместо натуральных чисел будем писать их остатки при делении на 3). Значит, множество выбранных чисел равно либо $\{1,1,1\}$, либо $\{2,2,2\}$, либо $\{1,1\}$, либо $\{2,2\}$, либо $\{1,2\}$. Итак, искомое количество способов равно $2\cdot C_{675}^2+2\cdot C_{675}^3+675^2=2\cdot C_{676}^3+675^2=102971025$.

Критерии оценивания:

- дан верный обоснованный ответ 5 баллов;
- не рассмотрены 1-2 случая для остатков от деления выбранных чисел на 3 3 балла;
- рассмотрены остатки от деления на 3, доказано, что $n \le 3-1$ балл.

Task 2. Преследуя преступника, полицейский упустил его в одном из дворов. В этот двор был единственный вход, а также 3 подъезда, в любом из которых мог скрыться преступник. Известно, что

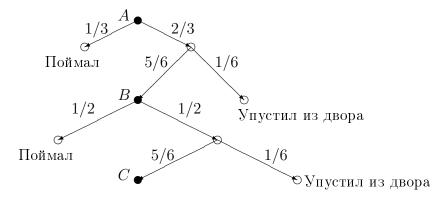
- если полицейский войдет в подъезд, в котором укрылся преступник, то гарантированно поймает его;
- если полицейский войдет в подъезд, где преступника нет, то с вероятностью $\frac{1}{6}$ тот убежит через выход из двора (и поймать его уже не удастся), с вероятностью $\frac{1}{2}$ преступник никуда не переместится, и с вероятностью $\frac{1}{3}$ спрячется в другом подъезде, где полицейского сейчас нет;
- не найдя преступника в подъезде, полицейский каждый раз выбирает другой подъезд для осмотра совершенно случайным образом.

С какой вероятностью полицейский поймает преступника? Перемещения между подъездами можно считать мгновенными.

Answer:
$$\frac{17}{21} \approx 0.8$$

Решение (RUS). С вероятностью 1/3 полицейский поймает преступника в первом же подъезде, в который зайдет, и с вероятностью 2/3 преступника там не окажется – значит, с вероятностью $\frac{2}{3} \cdot \frac{1}{6} = \frac{1}{9}$ преступник сбежит из двора (сразу после первого захода полицейского в подъезд), и с вероятностью $\frac{2}{3} \cdot \frac{5}{6} = \frac{5}{9}$ преступник так или иначе окажется в одном из подъездов, где сейчас нет полицейского.

Построим дерево, отображающее все возможные события (на рёбрах написаны соответствующие условные вероятности):



Оказавшись в точке B, полицейский будет иметь выбор из 2 подъездов, и с равной вероятностью поймает преступника в любом из них — этим обусловлены вероятности $\frac{1}{2}$ поймать преступника и дать ему скрыться в другом подъезде. После этого преступник снова либо сбежит из двора с вероятностью 1/6, либо так или иначе окажется (или останется) в подъезде, в котором сейчас нет полицейского.

Заметим, что вероятность поймать преступника в точке B равна таковой в точке C – обозначим эту вероятность за P. Тогда, учитывая все возможные события в точке B, получим $P=\frac{1}{2}+\frac{5}{12}\cdot P$, откуда $P=\frac{6}{7}$. Осталось учесть события из точки A, тогда получим изначальную вероятность поймать преступника $\frac{1}{3}+\frac{5}{9}\cdot P=\frac{17}{21}\approx 0.8$

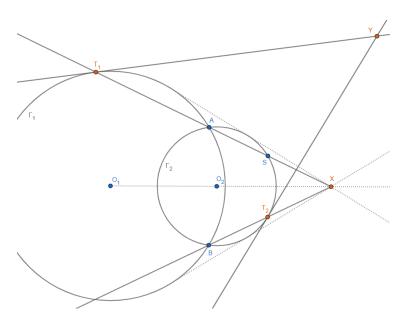
Критерии оценивания:

- приведен верный обоснованный ответ 5 баллов;
- рассматривается случай, когда погоня продлится сколь угодно долго (рассмотрена сумма беск. убывающей геометрической прогрессии) – 2 балла.

Task 3. Даны две окружности Γ_1 и Γ_2 , пересекающиеся в (несовпадающих) точках A, B. К этим окружностям проведены общие внешние касательные, пересекающиеся в точке X. Прямая XA повторно пересекает Γ_1 в точке T_1 , а прямая XB повторно пересекает Γ_2 в точке T_2 . Касательная к Γ_1 в точке T_1 и касательная к Γ_2 в точке T_2 пересекаются в точке T_3 .

Докажите, что точки X, Y, T_1, T_2 лежат на одной окружности.

Решение (RUS). Пусть O_1, O_2 – центры Γ_1, Γ_2 соответственно; S – вторая точка пересечения XA с Γ_2 . Не ограничивая общности, будем считать, что радиус Γ_2 меньше радиуса Γ_1 (очевидно, эти радиусы не равны, иначе общие внешние касательные были бы параллельны). Значит, S лежит на отрезке XT_1 .



Докажем, что прямая XA составляет равные углы с касательной к Γ_1 в точке T_1 и с касательной к Γ_2 в точке S. Гомотетия с центром X и коэффициентом XA/XS переводит Γ_2 в Γ_1 , при этом точки пересечения прямой XA с окружностью Γ_2 переходят в точки пересечения XA с Γ_1 в порядке их следования на луче XA. Значит, точка S перейдет в точку A, а точка A – в точку T_1 .

По свойству гомотетии, касательная к Γ_2 переходит в касательную к ее образу Γ_1 , т.е. касательная к Γ_2 в точке S перейдет в касательную к Γ_1 в точке A. При этом, согласно теореме об угле между касательной и хордой, касательные к Γ_1 в точках A и T_1 составляют равные углы с хордой AT_1 , из чего следует, что прямая XA составляет равные углы с касательной к Γ_1 в точке T_1 и с касательной к Γ_2 в точке S. Утверждение доказано.

Отметим, что если две касательные из доказанного утверждения параллельны, то прямая T_1S содержит центры окружностей Γ_1 и Γ_2 , из чего следует, что точки A,B совпадают, а это противоречило бы условию.

Докажем, что $\angle YT_1X = \angle YT_2X$, тогда задача будет решена. Рассмотрим прямую O_1O_2 – ось симметрии окружностей Γ_1 и Γ_2 . Очевидно, прямые XT_1 и XT_2 симметричны относительно O_1O_2 ; то же самое можно сказать и о касательных к Γ_2 в точках S и T_2 – значит, $\angle YT_2X$ равен углу между XT_1 и касательной к Γ_2 в точке S. Из доказанного выше утверждения следует, что этот же угол равен YT_1X , т.е. имеем $\angle YT_1X = \angle YT_2X$, что и требовалось доказать.

Критерии оценивания:

- приведено верное доказательство 5 баллов;
- доказано, что $T_1O_1 \parallel AO_2$ (либо эквивалентный факт) 2 балла.

Task 4. Про положительные числа a, b, c известно, что a+b+c=1, и каждое из них не превосходит $\frac{1}{2}$. Докажите, что

$$\sqrt{a} + \sqrt{b} + \sqrt{c} \leqslant \sqrt{a^2 + b^2 + c^2} + 2(b\sqrt{a} + c\sqrt{b} + a\sqrt{c})$$

Решение (RUS). Преобразуем неравенство к виду

$$\sqrt{a}(1-2b) + \sqrt{b}(1-2c) + \sqrt{c}(1-2a) \leqslant \sqrt{a^2 + b^2 + c^2}$$

Заметим, что числа (1-2b), (1-2c), (1-2a) по условию положительны и в сумме дают единицу. Применим неравенство Йенсена для функции \sqrt{x} , переменных a, b, c и коэффициентов (1-2b), (1-2c), (1-2a). В силу того, что функция \sqrt{x} вогнута на луче $(0, +\infty)$, получаем неравенство

$$\sqrt{a}(1-2b) + \sqrt{b}(1-2c) + \sqrt{c}(1-2a) \leqslant \sqrt{a(1-2b) + b(1-2c) + c(1-2a)}$$

Осталось заметить, что $a(1-2b)+b(1-2c)+c(1-2a)=a(a+c-b)+b(a+b-c)+c(b+c-a)=a^2+ac-ab+b^2+ab-bc+c^2+bc-ac=a^2+b^2+c^2.$

Критерии оценивания:

- приведено верное обоснованное доказательство 5 баллов;
- неравенство преобразовано к виду

$$\sqrt{a}(1-2b) + \sqrt{b}(1-2c) + \sqrt{c}(1-2a) \leqslant \sqrt{a^2+b^2+c^2}$$

или похожему, к которому можно применить неравенство Йенсена: 1 балл;

• за отсутствие доказательства вогнутости функции \sqrt{x} баллы не снижаются.

Task 5. Петя и Вася разыгрывают призовой фонд, содержащий перед началом игры натуральное число M фунтиков. (Мы не знаем, что такое фунтики, но фунтики бесконечно делимы, например можно «отмерить» $1/\sqrt{2}$ фунтиков). Петя знает секретное (целое) число фунтиков N (из диапазона $0 \le N \le M$), которое ему нужно для поездки в Иннополис, а Вася должен угадать это число N.

Игра состоит из раундов «Васина догадка – Петин ответ», которые продолжаются, пока Вася не назовет число N или пока не опустеет призовой фонд. В каждом раунде Вася называет целое число k (из диапазона $0 \le k \le M$) и

- если k < N, то Петя говорит об этом Васе, после чего игроки просто переходят к следующему раунду;
- если k > N, то Петя говорит об этом Васе, забирает из фонда M/3 фунтиков, и если в фонде еще остались фунтики, то игроки переходят к следующему раунду;
- если k = N, то Петя говорит об этом Васе, затем Вася получает из фонда (x n) фунтиков, где x количество фунтиков в фонде на данный момент, а n количество сыгранных раундов. Если x < n, то Вася получит 0 фунтиков.

Какое наибольшее число фунтиков может гарантировать себе Вася?

Answer:
$$\frac{2M}{3} - \min\{y \mid \frac{y(y+1)}{2} \ge M\}$$

Решение (RUS). Очевидно, что Васе нужна стратегия, в которой он не более двух раз «проваливается», то есть называет число, большее задуманного Петей N (так как после третьего «провала» весь фонд уходит Пете). Сначала предложим стратегию, позволяющую Васе гарантированно получить указанное количество фунтиков, а потом докажем, что это максимальное гарантированное количество.

Стратегия Васи с одним «провалом»: пусть $n=\min\{y\mid \frac{y(y+1)}{2}\geq M\}$ (т.е. наименьшее натуральное n, при котором $\frac{n(n+1)}{2}\geq M$). Шаги до «провала»: Вася называет числа $k_1=n$, $k_2=n+(n-1),\ k_3=n+(n-1)+(n-2),\ \ldots$, пока Петя не скажет, что для очередного $k_{m+1}=n+(n-1)+\cdots+(n-m)>N$ (первый «провал») или что угадано число N. Сумма арифметической прогрессии $\frac{n(n+1)}{2}\geq M\geq N$, а значит, такой момент обязательно наступит. Если это момент первого «провала», то в этот момент Петя получает из фонда M/3 фунтиков, в фонде остается 2M/3 фунтиков, а Вася приступает к выполнению шагов до «угадал».

Шаги до «угадал»: Вася называет (не более чем (m-1)) последовательные числа от (k_m+1) до N (которое меньше k_m+1) до тех пор, пока Петя не скажет, что задуманное число угадано, а Вася, сыграв n=(m+1)+(n-(m-1)) раундов, получает из фонда (2M/3-n) фунтиков.

Докажем, что такая стратегия оптимальна. Пусть есть какая-либо стратегия для Васи, позволяющая гарантированно получить больше фунтиков. Эта стратегия предписывает назвать возрастающую последовательность чисел $k_1' < k_2' < \dots < k_t'$, где t < n и $k_{i+1}' < k_i' + (n-i)$ для любого $1 \le i < t$. Но так как $n = \min\{y \mid \frac{y(y+1)}{2} \ge M\}$, то $k_t' < M$, а значит, остались непроверенные числа от $(k_t' + 1)$ до M, и такая стратегия не может гарантированно дать лучший результат.

Критерии оценивания:

- приведен верный обоснованный ответ 5 баллов;
- приведена и доказана формула для шагов до «угадал» 4 балла;
- рассмотрена арифметическая прогрессия 2 балла.

Task 6. В правильном n-угольнике ($n \ge 3$) Коля, аналитик платформы «AllCups», решил сопоставить отрезкам между вершинами (т.е. сторонам и диагоналям) их важности, т.е. натуральные числа, удовлетворяющие условиям:

- 1. для любого треугольника с вершинами в вершинах данного n-угольника важности двух его сторон равны и превосходят важность третьей стороны;
- 2. важности всех отрезков должны образовывать отрезок натурального ряда, т.е. быть числами $1, 2, 3, \ldots, k$ без пропусков, но с повторениями.

Найдите максимальное возможное k.

Answer: n-1

Решение (RUS). Докажем индукцией по n, что наибольшее возможное значение k не превосходит n-1. База (n=3): присвоим сторонам треугольника важности 2, 2, 1 – они удовлетворяют условию.

Пусть утверждение выполняется для всех n от 3 до $p \in \mathbb{N}$. Докажем для n=p+1. Рассмотрим произвольное распределение важностей для n-угольника, где n=p+1 (далее покажем, что оно существует). Согласно условию, должен быть отрезок важности 1 – рассмотрим произвольный треугольник на вершинах n-угольника (далее будем называть такие треугольники n-дходящими), для которого этот отрезок является стороной. В таком треугольнике не может быть другой стороны важности 1, иначе важность третьей стороны была бы меньше 1, что невозможно. Значит, у любого подходящего треугольника со стороной важности 1 остальные две стороны имеют равную важность, большую 1.

Обозначим вершины отрезка важности 1 как A и B, а C и D будут произвольными вершинамми n-угольника, отличными от A и B (такие найдутся, т.к. $p+1 \geq 4$). Покажем, что важности сторон треугольника ACD не поменяются после замены A на B. Действительно, при такой замене отрезок AC будет заменен на BC, а отрезок AD — на BD. Но поскольку оба треугольника ABC и ABD содержат отрезок AB важности AB важности AB важности AB важности AB важности AB важности AB и BC совпадают, как и важности AD и BD.

Проделаем следующую процедуру: для отрезка AB важности 1 эти две вершины «склеим» в одну вершину X, и для каждой другой вершины C важностью XC будем считать важность AC. Докажем, что новый многоугольник удовлетворяет первому условию и «ослабленному» второму, т.е. важности всех его сторон и диагоналей образуют отрезок $1,2,3,\ldots,k$ или $2,3,\ldots,k$ натурального ряда без пропусков. Действительно, для любого подходящего треугольника XYZ нового многоугольника, если ни одна из вершин X,Y,Z не была склеена с другой, то требование на важности сторон не изменилось. Если же какая-то вершина (не ограничивая общности, вершина X) была склеена из вершин A и B, то, как было показано ранее, распределение важностей в $\triangle XYZ$ будет таким же, как в треугольниках AYZ и BYZ, в каждом из которых первое условие было выполнено, а значит, оно не нарушилось и после склейки.

Второе «ослабленное» условие также будет выполнено, т.к. после склейки из набора важностей будет удалено 1, а остальные останутся.

Проделав такую склейку по очереди с каждым отрезком важности 1 получим m-угольник (m < n), для которого выполнены первое и «ослабленное» второе условия задачи. Для него понизим все важности на 1, и получим выполняющиеся условия для m-угольника – значит, $k-1 \le m-1$, откуда $k \le m \le n-1$, что и требовалось доказать.

Осталось показать, что требуемое распределение важностей возможно. Занумеруем все вершины n-угольника числами от 1 до n, и зададим отрезкам, соединяющим вершины c номерами i и j (i < j), важность j-1. Легко проверить, что оба условия на важности выполняются, и максимальная важность равна n-1.

Критерии оценивания:

- приведен верный обоснованный ответ 5 баллов;
- ullet применена индукция до доказательства того, что k=n-1 балл.