Информационная безопасность

2022/23 учебный год

Заключительный этап

Предметный тур

Информатика. 8-11 класс

Задача VI.1.1.1. Игра на любителя (20 баллов)

Имя входного файла: стандартный ввод.

Имя выходного файла: стандартный вывод.

Ограничение по времени выполнения программы: 1 секунда.

Ограничение по памяти: 256 мегабайт.

Условие

Вася любит играть с числами. Вот и в этот раз Вася придумал следующую игру: Для начала Вася выбирает целевое число x.

Игра начинается с числа s=0. На каждом шаге Вася может выполнить одну из двух операций:

- 1. Прибавить 1 к числу s.
- 2. Умножить число s на 2.

Игра заканчивается, когда Вася получает s = x.

У Васи есть любимое число p. Теперь Вася решил поиграть с этим числом в свою новую игру. Но есть проблема — у Васи осталась только запись числа p в системе счисления $b=2^k$.

Помогите Васе найти **минимальное количество** вышеописанных операций, выполнив которые, он сможет получить число p из числа s=0.

Формат входных данных

В первой строке содержатся два целых числа n и k $(1 \leqslant n \leqslant 10^5, 1 \leqslant k \leqslant 4)$ — количество цифр в числе p и показатель степени в системе счисления $b=2^k$.

Во второй строке задаётся строка, состоящая из n символов P_1, P_2, \ldots, P_n — запись числа p в системе счисления b. Гарантируется, что P_i является корректной цифрой в записи системы счисления b.

Формат выходных данных

Выведите целое число — **минимальное количество** операций, чтобы получить число p из числа s=0.

Критерии оценивания

Группа	Баллы	Дополнительные ограничения	Необходимые группы
0	-	Тесты из условия	-
1	5	$1 \leqslant n \leqslant 10, k = 1$	0
2	15	$1 \leqslant n \leqslant 60, k = 1$	1
3	20	k = 1	2
4	20	k=2	0
5	20	k = 3	0
6	20	k = 4	0

Примеры

Пример №1

Стандартный ввод
5 1
10011
Стандартный вывод
7

Пример №2

Стандартный ввод
2 4
C9
Стандартный вывод
11

Пояснения к примеру

Пояснение к первому примеру:

- Любимое число Васи $p = 10011_2 = 19_{10}$.
- Последовательность из примера задаёт следующие преобразования: $0 \to 1 \to 2 \to 4 \to 8 \to 9 \to 18 \to 19$.
- Итого 7 операций.

Пояснение ко второму примеру:

- Любимое число Васи $p = C9_{16} = 201_{10}$.
- Последовательность из примера задаёт следующие преобразования: $0 \to 1 \to 2 \to 3 \to 6 \to 12 \to 24 \to 25 \to 50 \to 100 \to 200 \to 201$.
- Итого 11 операций.

Отметим, что установлено следующее соответствие чисел 10-й системы счисления и цифр 16-й:

- $10_{10} = A_{16}$.
- $11_{10} = B_{16}$.
- $12_{10} = C_{16}$.
- $13_{10} = D_{16}$.
- $14_{10} = E_{16}$.
- $15_{10} = F_{16}$.

Задача VI.1.1.2. Оптимизация числа (40 баллов)

Имя входного файла: стандартный ввод. Имя выходного файла: стандартный вывод.

Ограничение по времени выполнения программы: 1 секунда.

Ограничение по памяти: 256 мегабайт.

Условие

Дано целое число x. K нему можно применять следующую операцию неограниченное количество раз:

• Поменять любые две **соседние** цифры a и b за |a-b| секунд.

За какое наименьшее время удастся сделать число x максимальным?

Формат входных данных

В первой строке расположено единственное натуральное число x ($1 \le x \le 10^{300\,000} - 1$) — число, описанное в условии.

Формат выходных данных

Выведите единственное целое неотрицательное число t — минимальное количество секунд, которого хватит, чтобы посредством вышеупомянутой операции сделать число x максимальным.

Критерии оценивания

Группа	Баллы	Доп. ограничения	Необходимые группы
0	-	Тесты из условия	-
1	10	$1 \leqslant x \leqslant 10^3 - 1$	0
2	20	$10^3 \leqslant x \leqslant 10^9 - 1$	1
3	30	$10^9 \leqslant x \leqslant 10^{5000} - 1$	2
4	40	Без доп. ограничений	3

Примеры

Пример №1

Стандартный ввод	
1459	
Стандартный вывод	
25	

Пояснения к примеру

Приведём возможную последовательность обменов для числа из первого примера.

- 1. Совершим преобразование $1459 \Leftrightarrow 4159$ за |1-4|=3 секунды.
- 2. Совершим преобразование $4159 \Leftrightarrow 4519$ за |1-5|=4 секунды.

- 3. Совершим преобразование $4519 \Leftrightarrow 4591$ за |1-9|=8 секунд.
- 4. Совершим преобразование $4591 \Leftrightarrow 4951$ за |5-9|=4 секунды.
- 5. Совершим преобразование $4951 \Leftrightarrow 9451$ за |4-9|=5 секунд.
- 6. Совершим преобразование $9451 \Leftrightarrow 9541$ за |4-5|=1 секунду.

Итого, 3+4+8+4+5+1=25 секунд.

Можно показать, что максимизировать число 1459 быстрее не выйдет.

Задача VI.1.1.3. Олимпиада по информационной безопасности (30 баллов)

Имя входного файла: стандартный ввод.

Имя выходного файла: стандартный вывод.

Ограничение по времени выполнения программы: 2 секунды.

Ограничение по памяти: 256 мегабайт.

Условие

В олимпиаде по информационной безопасности участвуют n команд. Команды были рассажены за **круглый стол** так, что команда с номером t+1 сидит рядом с командой t, а команда 1 сидит рядом с командой n.

Для проведения было подготовлено n компьютеров — по одному на команду. Про компьютер с номером i известна его производительность a_i .

Организаторы могут как угодно распределить компьютеры между командами и заключили, что эффективнее всего будет максимизировать величину S — сумму абсолютных разниц в производительности компьютеров **соседних** команд.

Формально,
$$S = \left(\sum_{t=1}^{n-1} |a_{p_t} - a_{p_{t+1}}|\right) + |a_{p_1} - a_{p_n}|$$
, где p — перестановка чисел от 1 до n такая, что команда t работает за компьютером p_t .

Во время тура на площадке случаются скачки напряжения. В результате одного скачка изменяется производительность **ровно одного** компьютера. Обратите внимание, что изменение производительности носит постоянный характер (до конца соревнования или до следующего скачка с заданным компьютером).

После каждого скачка организаторы хотят знать, какой максимальной величины S можно достичь, если заново распределить компьютеры между командами оптимальным образом.

Формат входных данных

В первой строке даны два целых числа n и q ($3 \le n \le 2 \cdot 10^5$, $1 \le q \le 2 \cdot 10^5$) — количество команд и скачков напряжения соответственно.

В следующей строке перечислены n целых чисел массива a ($1 \leqslant a_i \leqslant 10^9$) — начальные производительности компьютеров.

Следующие две строки описывают скачки напряжения.

В первой строке заданы q целых чисел $(1 \leq index_i \leq n)$, где $index_i$ — номер компьютера, производительность которого изменилась после i-го скачка напряжения.

Во второй строке заданы q целых чисел ($1 \le efficiency_i \le 10^9$), где $efficiency_i$ — производительность установившаяся на компьютере с номером $index_i$ после i-го скачка напряжения.

Формат выходных данных

На отдельных строках выведите q целых неотрицательных чисел S_1, S_2, \ldots, S_q , где S_j — максимальная сумма разниц в производительности компьютеров **соседних** команд, которую можно достичь после j-го скачка напряжения.

Критерии оценивания

Группа	Баллы	Дополнительные ограничения	Необходимые группы
0	-	Тесты из условия	-
1	10	$3 \leqslant n \leqslant 10, q = 1$	0
2	10	$3 \leqslant n \leqslant 10^3, 1 \leqslant q \leqslant 10$	1
3	25	$1 \leqslant q \leqslant 10$	2
4	25	$1 \leqslant a_i \leqslant 100, \ 1 \leqslant x_j \leqslant 100$	0
5	30	Без дополнительных ограничений	3, 4

Примеры

Пример №1

Стандартный ввод
5 3
7 2 8 1 5
3 2 4
2 10 4
Стандартный вывод
18
28
22

Пример №2

Стандартный ввод
6 2
1 2 3 4 5 6
1 5
10 1
Стандартный вывод
24
28

Пояснения к примеру

Разберём первый пример.

- 1. Случился первый скачок напряжения:
 - a = [7, 2, 2, 1, 5]: компьютер i имеет производительность a_i .
 - Пусть p = [1, 4, 5, 3, 2]: команда t пользуется компьютером p_t .
 - Тогда $S_1 = |7-1| + |5-1| + |5-2| + |2-2| + |7-2| = 18.$

- 2. Случился второй скачок напряжения:
 - a = [7, 10, 2, 1, 5].
 - Пусть p = [2, 4, 1, 3, 5].
 - Тогда $S_2 = |10 1| + |1 7| + |7 2| + |2 5| + |5 10| = 28.$
- 3. Случился третий скачок напряжения:
 - a = [7, 10, 2, 4, 5].
 - Пусть p = [2, 3, 1, 4, 5].
 - Тогда $S_3 = |10-2| + |2-7| + |7-4| + |4-5| + |5-10| = 22.$

Можно показать, что более оптимальных вариантов распределить компьютеры между командами — выбрать другую перестановку p — после каждого из трёх скачков не существует.

Задача VI.1.1.4. Трудности перевода (30 баллов)

Имя входного файла: стандартный ввод.

Имя выходного файла: стандартный вывод.

Ограничение по времени выполнения программы: 1 секунда.

Ограничение по памяти: 256 мегабайт.

Условие

Ваш друг Харрис часто меняет пароль от компьютера. Когда пароль необходимо сменить, Харрис выбирает строку s длины n, составленную из цифр от 0 до 9, а также систему счисления k. Затем Харрис выполняет следующую последовательность шагов, пока строка s не пуста.

- Выбирает число m ($1 \le m \le |s|$, где |s| длина строки s на момент выполнения шага) такое, что десятичное число $\overline{s_1 \dots s_m}$ записывается одной **положительной** цифрой k-й системы счисления. Обратите внимание, что на этом шаге строка s не может начинаться с символа 0.
- Дописывает эту цифру в начало создаваемого пароля.
- ullet Стирает первые m символов строки s. Таким образом, длина и индексация строки меняются.

В очередной раз выбрав строку s и систему счисления k, Харрис задался вопросом: «а сколько всего различных паролей я могу получить, следуя намеченному плану?»

Харрису трудно переводить большие числа из одной системы счисления в другую. Помогите Харрису посчитать количество различных паролей, которые он может получить. Это число может быть очень большим, поэтому выведите его остаток от деления на 10^9+7 .

Формат входных данных

В первой строке натуральное число $n\ (1\leqslant n\leqslant 10^6)$ — длина строки s.

Во второй строке натуральное число $k~(11\leqslant k\leqslant 10^{200\,000}-1)$ — система счисления, описанная в условии.

В третьей строке входных данных даётся строка s. Гарантируется, что строка s составлена из цифр десятичной системы счисления — $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$.

Φ ормат выходных данных

Выведите единственное число — остаток от деления на $10^9 + 7$ количества различных паролей, которые может получить Харрис.

Критерии оценивания

Группа	Баллы	Доп. ограничения	Необходимые группы
0	_	Тесты из условия	-
1	10	$1 \leqslant n \leqslant 5, 11 \leqslant k \leqslant 99$	0
2	20	$1 \leqslant n \leqslant 18, 11 \leqslant k \leqslant 99$	1
3	20	$1 \leqslant n \leqslant 10^4, \ 11 \leqslant k \leqslant 10^{1000} - 1$	2
4	20	Каждый символ строки <i>s</i> выбирается	3
		независимо и равновероятно	
5	30	Без дополнительных ограничений	4

Примеры

Пример №1

Стандартный ввод	
5	
35	
12345	
Стандартный вывод	
5	

Пример №2

Стандартный ввод
18
30
142929242127101712
Стандартный вывод
320

Пример №1

Стандартный ввод
5
36
10001
Стандартный вывод
0

Пояснения к примеру

Пояснение к первому тестовому примеру.

В данном тесте Харрис разбивает строку 12345, а система счисления k=35.

- Перечислим все допустимые способы составить пароль в первом примере. Пусть M массив, в котором m_i равно количеству символов, из которых Харрис составит новую цифру на i-м шаге.
 - 1. M = [1, 1, 1, 1, 1] пароль будет «5-4-3-2-1».
 - 2. M = [1, 1, 2, 1] пароль будет «5-34-2-1».
 - 3. M = [1, 2, 1, 1] пароль будет «5-4-23-1».
 - 4. M = [2, 1, 1, 1] пароль будет «5-4-3-12».
 - 5. M = [2, 2, 1] пароль будет «5-34-12».
- Приведем несколько примеров паролей, которые Харрис не мог составить:
 - 1. M = [2, 1, 2] в таком случае число, взятое на последнем шаге, будет равно 45, что не является цифрой в системе счисления k;
 - 2. M = [3, 1, 1] в таком случае число, взятое на первом шаге, будет равно 123, что также не является цифрой в системе счисления k.

Пояснение ко второму тестовому примеру.

В данном примере Харрис выбрал строку s = *142929242127101712 * и k = 30.

Если на каждом шаге выбирать m=2, то получится пароль «12-17-10-27-21-24-29-29-14».

Пояснение к **третьему** тестовому примеру.

Можно показать, что Харрис не может разбить данную строку ни одним корректным способом — в любом случае строка s будет начинаться с 0 в какой-либо момент разбиения.

Задача VI.1.1.5. Ограбление по-берляндски (30 баллов)

Имя входного файла: стандартный ввод.

Имя выходного файла: стандартный вывод.

Ограничение по времени выполнения программы: 1 секунда.

Ограничение по памяти: 256 мегабайт.

Условие

Компьютеризированный банк Берляндии «Ko-Bank» прославился самой надёжной системой управления счетами. Разумеется, хакерская группировка «Amonamies» времени зря не теряла и уже установила, что банковские счета управляются компьютерами с номерами $1, \ldots, N$. Про компьютер с номером i известно:

- \bullet t_i время в секундах, требующееся для взлома компьютера;
- c_i количество бурлей на банковских счетах, к которым имеет доступ компьютер;
- p_i номер компьютера, который необходимо взломать, чтобы перейти ко взлому i-го.

Помимо этого «Amonamies» нашли самое уязвимое место сети — компьютер с номером 1: взлом этого компьютера не требует получения доступа к любому другому компьютеру, поэтому во входных данных $p_1 = 0$.

У «Amonamies» будет не более S секунд на взлом компьютеров — далее внутренние механизмы безопасности засекут проникновение и отключат доступ ко всей сети. Сервер устроен так, что в один момент времени «Amonamies» могут взламывать ровно один компьютер.

Вам, как стажёру в отделе информационной безопасности «Ko-Eanka», поручили определить максимально возможное количество бурлей, которые «Amonamies» могут вывести со взломанных компьютеров (вывод средств производится мгновенно).

Формат входных данных

В первой строке находятся два целых числа N, S ($1 \le N \le 100, 1 \le S \le 10^5$) — количество компьютеров в сети и время на взлом, которым располагают «Amonamies».

Затем следуют N строк с информацией о компьютерах. Строка i+1 содержит три целых числа t_i, c_i, p_i ($1 \le t_i \le 10^3, 1 \le c_i \le 10^6, 1 \le p_i < i$ для $i \ne 1$, $p_1 = 0$) — время для взлома, количество бурлей на банковских счетах и номер компьютера, взлом которого необходим для взлома данного компьютера.

Формат выходных данных

Выведите единственное число — максимально возможное количество украденных бурлей.

Критерии оценивания

Группа	Баллы	Дополнительные ограничения	Необходимые группы
0	-	Тесты из условия	-
1	7	$p_i = max(1, i-2)$ для всех $i \geqslant 2$	-
2	10	$p_i = 1$ для всех $i \geqslant 2$	-
3	13	$p_i = \lfloor rac{i}{2} floor$	-
4	20	$1 \leqslant N \leqslant 20$	-
5	20	$t_i = 1$	-
6	30	Без дополнительных ограничений	0 - 5

Примеры

26

Пример №1

Стандартный ввод		
6 20		
1 10 0		
11 1 1		
3 8 1		
5 7 2		
6 7 3		
2 6 4		
Стандартный вывод		

Пример №2

Стандартный ввод		
7 45		
25 10 0		
16 43 1		
3 46 1		
12 43 1		
3 30 3		
20 42 3		
2 50 2		
Стандартный вывод		
129		

Пояснения к примеру

В первом примере «Amonamies» выгоднее всего взломать компьютеры с номерами 1, 2, 3, 4.

Во втором примере «Amonamies» выгоднее всего взломать компьютеры с номерами 1, 3, 4, 5.

Математика. 8–9 классы

Задача VI.1.2.1. (15 баллов)

Чебурашка решил сделать подарок Гене и придумал новую шахматную фигуру, которую назвал «крокодил». «Крокодил» ходит на две клетки прямо и четыре в сторону. Может ли «крокодил» обойти всю шахматную доску, побывав в каждой клетке хотя бы один раз?

Задача VI.1.2.2. (20 баллов)

На окружности отмечены одна белая и 9 синих точек. Сколько различных выпуклых многоугольников с вершинами в этих точках можно построить, если одна из вершин обязательно белая?

Задача VI.1.2.3. (20 баллов)

Вася сказал, что придумал трёхзначное простое число, все цифры которого различны и первая цифра равна произведению двух последних. А Юра считает, что таких чисел не существует. Кто из них прав?

Задача VI.1.2.4. (20 баллов)

Из круга вырезали треугольник со сторонами 3, 5 и 6. Известно, что радиус этого круга наименьший из возможных. Найдите его.

Задача VI.1.2.5. (25 баллов)

Решите уравнение $\frac{x^4-1}{x-1}=5^y$ в целых числах.

Математика. 10-11 классы

Задача VI.1.3.1. (20 баллов)

Все четырехзначные числа, составленные из цифр 1, 2, 3, занумерованы в порядке возрастания. Какое число находится под номером 49?

Задача VI.1.3.2. (20 баллов)

Существует ли натуральное число, которое в 1511 раза больше суммы его цифр?

Задача VI.1.3.3. (20 баллов)

а и b — положительные числа. Сумма минимальных значений функций

$$f(x) = 2ax^2 + 2023x + 6b \text{ M} g(x) = 3bx^2 - 2023x + 4a$$

равна 0.

Чему равны эти минимальные значения?

Задача VI.1.3.4. (20 баллов)

В трапеции ABCD продолжения боковых сторон AB и CD пересекаются в точке P. Окружность радиуса 6 проходит через точки A и D и пересекает луч AB в точке K. Найдите радиус описанной окружности вокруг треугольника KPD, если $AD=10,\ BC=4,\ CD=5.$

$3aдaчa\ VI.1.3.5.\ (20\ баллов)$

На всемирной конференции за круглым столом уселись 2023 человек — разведчики, которые всегда говорят правду, и шпионы, которые всегда говорят неправду. Каждого из сидящих спросили, про его двоих соседей — слева и справа — «сколько среди его соседей шпионов?». Каждый человек дал одинаковый ответ. Какое наибольшее количество среди сидящих за столом может быть разведчиков, если известно, что за столом обязательно есть хотя бы 1 разведчик и хотя бы 1 шпион?