# Нейротехнологии и когнитивные науки

2022/23 учебный год

## Первый отборочный этап

## Предметный тур. Информатика

## Первая попытка. Задачи 8–11 класса

Задача ІІ.1.1.1. Три квадрата (15 баллов)

Темы: математика, задачи для начинающих.

#### Условие

Фермер владеет участком земли в форме прямоугольника с длинами сторон *а* и *b*. Недавно фермер понял, что может разбить свой участок на три части так, что каждая часть будет иметь форму квадрата, и решил воспользоваться этой возможностью. Напишите программу, которая найдет площадь каждой части после разбиения.

#### Формат входных данных

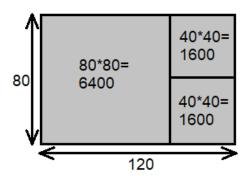
На вход подается два натуральных числа a и b — длины сторон прямоугольника. Числа не превосходят 1000. Каждое число подается в отдельной строке. Гарантируется, что длины сторон таковы, что прямоугольник может быть разбит на три квадрата.

#### Формат выходных данных

Требуется вывести через пробел три натуральных числа — площади каждого из участков после разбиения. Числа могут выводиться в произвольном порядке.

#### Методика проверки

Программа проверяется на 12-ти тестах. Прохождение каждого теста оценивается в 1 балл. Тест из условия задачи при проверке не используется.


#### Примеры

#### Пример №1

| Стандартный ввод  |
|-------------------|
| 120               |
| 80                |
| Стандартный вывод |
| 6400 1600 1600    |

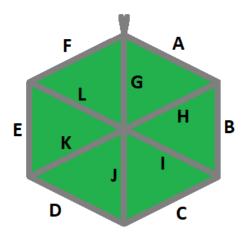
#### Пояснения к примеру

При заданных размерах прямоугольник может быть разбит на три квадрата так, как показано на рисунке ниже. Обратите внимание, что могут существовать и другие варианты разбиения.



#### Пример программы-решения

Ниже представлено решение на языке Python 3.


```
1  a, b = map(int,input())
2  if a>b:
3    a,b=b,a
4  s1=a*a
5  s2=(a*b-s1)//2
6  print(s1,s2,s2)
```

## Задача ІІ.1.1.2. Пробежка в шестиугольном парке (18 баллов)

Темы: конструктивное построение, задачи для начинающих.

#### Условие

Иван Иванович совершает пробежки по парку, который имеет форму шестиугольника. В парке 12 аллей, обозначенных символами латинского алфавита от «А» до «L». Схему парка смотрите на рисунке. Длина каждой аллеи ровно 100 м. В парке есть только один вход у перекрестка аллей «А», «F», «G». Иван Иванович хочет начать и закончить пробежку у входа в парк и пробежать ровно k м. На каждом перекрестке Иван Иванович может повернуть в любую строну, но он не хочет поворачивать назад.



Напишите программу, которая составит любой маршрут движения, удовлетворяющий указанным требованиям.

#### Формат входных данных

На вход в подается одно натуральное число k — желаемая длина маршрута,  $300 \leqslant k \leqslant 10000$ . Число k делится на 100 без остатка.

#### Формат выходных данных

Требуется вывести строку из k/100 символов, содержащую обозначения аллей в построенном маршруте.

#### Методика проверки

Программа проверяется на 18-ти тестах. Прохождение каждого теста оценивается в 1 балл. Тест из условия задачи при проверке не используется.

#### Примеры

Пример №1

| Стандартный ввод  |
|-------------------|
| 800               |
| Стандартный вывод |
| FLKEFAHG          |

#### Пример программы-решения

```
1  a=int(input())//100
2  ans=''
3  while a>=6:
4  ans+='AHG'
```

## Задача ІІ.1.1.3. Знакопеременная сумма (25 баллов)

Темы: префиксные суммы.

#### Условие

Знакопеременной суммой последовательности чисел  $a_1, a_2, \ldots, a_k$  называется результат вычисления выражения  $a_1 - a_2 + a_3 - a_4 + a_5 - \ldots + (-1)^{k+1}a_k$ . Другими словами, мы складываем все числа в последовательности, но элементы с нечетными номерами мы берем со знаком плюс, а четные со знаком минус.

Задан массив  $x_1, x_2, \ldots, x_n$  из n целых чисел и m запросов. Каждый запрос содержит по два натуральных числа b и e. В ответ на каждый запрос ваша программа должна взять подмассив с номерами элементов от b до e включительно и посчитать его знакопеременную сумму  $x_b - x_{b+1} + x_{b+2} - x_{b+3} + \ldots + (-1)^{e-b}x_e$ 

#### Формат входных данных

На вход в первой строке подается одно натуральное число n размер массива чисел,  $1 \leqslant n \leqslant 10^5$ . Во второй строке через пробел записаны элемент массива целые числа  $x_1, x_2, \ldots x_n$ . Каждое из чисел не превосходит  $10^6$  по абсолютной величине. Далее в третьей строке записано одно натуральное число m количество запросов,  $1 \leqslant m \leqslant 10^5$ . В каждой из m последующих строк записано по два числа  $b_i$  и  $e_i$  таких, что  $1 \leqslant b_i \leqslant e_i \leqslant n$ . Каждая пара чисел задает границы подмассива для выполнения одного запроса.

#### Формат выходных данных

Требуется вывести через пробел m целых чисел  $s_1, \ldots s_m$ . Каждое из чисел должно быть равно знакопеременной сумме соответствующего подмассива.

Если вы программируете на Python, то убрать перенос строки в функции print можно при помощи именованного параметра end, например, print(a,end=' ').

#### Методика проверки

Программа проверяется на 25-ти тестах. Прохождение каждого теста оценивается в 1 балл. Тест из условия задачи при проверке не используется. В первых 10-ти тестах размер массива и количество запросов не превосходят 1000.

#### Примеры

Пример №1

```
Стандартный ввод

7 -4 1 3 2

4

2 2

1 3

2 4

4 5

Стандартный вывод

-4 12 -2 1
```

#### Пояснения к примеру

Для каждого из запросов ответ получается следующим образом:

$$-4 = -4$$

$$7 - (-4) + 1 = 12$$

$$-4 - 1 + 3 = -2$$

$$3 - 2 = 1$$

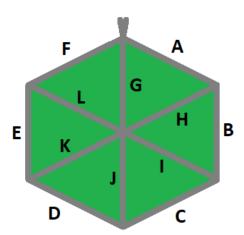
#### Пример программы-решения

Ниже представлено решение на языке Python 3.

```
n=int(input())
  X=list(map(int,input().split()))
3 S = [0]
  m=1
4
   for x in X:
5
        S.append(S[-1]+m*x)
6
7
        m=-m
  m=int(input())
8
9
   for i in range(3,m+3):
10
        b,e=map(int,input().split())
11
        s=S[e]-S[b-1]
12
        if b\%2==0:
13
            s=-s
14
       print(s,end=' ')
```

## Задача ІІ.1.1.4. Проверка корректности маршрута (25 баллов)

Темы: реализация.


#### Условие

В некоторых случаях проверить корректность работы программы гораздо сложнее, чем написать ее. Сейчас у вас будет шанс в этом убедиться. От вас требуется написать программу для проверки корректности ответа второй задачи этой попытки. Напомним ее условие.

Имеется парк в виде шестиугольника с 12-ю аллеями, которые обозначены заглавными символами латиницы. В парке есть только один вход у перекрестка аллей «А», «F», «G». Схема парка приведена ниже. Требуется проверить корректность составленного маршрута движения по этому парку. Маршрут представляется как последовательность символов, представляющих аллеи в том порядке, в котором они были пройдены. Маршрут движения считается корректным если выполняются следующие требования.

- Описание маршрута содержит только символы от «А» до «L».
- Маршрут начинается и заканчивается у входа в парк.
- Запрещено разворачиваться на 180°. В частности, это означает, что начав движение с одного конца аллеи, вы обязательно дойдете до другого ее конца, причем на перекрестке вы должны будете перейти на другую аллею.

На вход вашей программе будет подано несколько описаний маршрутов. Ваша программа должна будет определить, какие из них удовлетворяют указанным требованиям.



#### Формат входных данных

На вход в первой строке подается одно натуральное число n — количество проверяемых маршрутов,  $1 \leqslant n \leqslant 20$ . Далее в n строках записаны сами маршруты. Описание каждого маршрута состоит из последовательности заглавных символов латиницы. Каждое описание не пустое, и содержит не более 100 символов.

#### Формат выходных данных

Программа должна вывести строку из n нулей и единиц. Единица на i-той позиции означает, что маршрут с номером i является корректным. В противном случае в этой позиции должен быть записан ноль.

#### Методика проверки

Программа проверяется на 5-ти тестах. Прохождение каждого теста оценивается в 5 баллов. Тест из условия задачи при проверке не используется.

#### Примеры

Пример №1

```
      Стандартный ввод

      6

      ABCDKHA

      FMG

      ABBA

      ABCEF

      BCDEF

      ABCDK

      Стандартный вывод

      100000
```

#### Пояснения к примеру

Первый маршрут является корректным.

Второй маршрут содержит недопустимое обозначение аллеи.

В третьем маршруте происходит разворот на 180°.

Четвертый маршрут не является связным. После третьего шага он приходит к перекрестку «С», «D», «J» и с него нельзя попасть на аллею «Е».

Пятый маршрут начинается не у входа.

Шестой маршрут заканчивается не у входа.

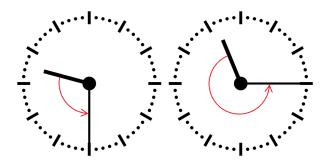
#### Пример программы-решения

```
def checkway(way):
1
        c=0
2
        p='Z'
3
        for x in way:
4
            if x<'A' or x>'L' or x==p:
5
                 return False
6
7
            p=x
            num=ord(x)-ord('A')
            if num>5:
9
                 if c==6:
10
                     c=num-6
11
                 elif c==num-6:
12
13
                 else:
14
                     return False
15
16
            else:
```

```
if c==num:
17
                      c=(c+1)\%6
18
                  elif c==(num+1)\%6:
19
                       c=(c+5)\%6
20
                  else:
21
                       return False
22
         return c==0
23
24
    m=int(input())
25
    for i in range(m):
26
         print(int(checkway(input())))
27
```

## Вторая попытка. Задачи 8–11 класса

## Задача ІІ.1.2.1. Стрелки часов (12 баллов)


Темы: математика, задачи для начинающих.

#### Условие

Иван Иванович посмотрел на часы и заметил, что минутная и часовая стрелки образуют угол в  $\alpha$ °. С этого момента прошло h ч и m мин. Напишите программу, которая вычислит угол между стрелками после истечения этого времени.

Угол измеряется от часовой до минутной стрелки в направлении против хода часов. Если стрелки совпадают, то угол равен нулю. Рассмотрим пример на рисунке. Пусть  $\alpha=105^\circ$ . В частности, такой угол появляется в 9:30, так как минутная стрелка в этот момент указывает на 270°, а часовая на 165°. Через 1 ч 45 мин на часах будет 11:15. В этот момент времени минутная стрелка указывает на 0°, а часовая на 112, 5°. Угол от часовой до минутной стрелки будет равен 360° — 112, 5° = 247, 5°.

Отметим, что угол  $\alpha=105^\circ$  появляется и в другие моменты времени, однако, это не повлияет на итоговый ответ.



#### Формат входных данных

На вход в первой строке подается одно целое неотрицательное число  $\alpha$  исходный угол между стрелками,  $0\leqslant \alpha\leqslant 359$ . Во второй строке через пробел на вход подается два числа h и m время, прошедшее с момента наблюдения в часах и минутах,  $0\leqslant h\leqslant 11;\ 0\leqslant m\leqslant 59$ .

#### Формат выходных данных

Программа должна вывести одно вещественное число ответ к задаче. Ответ должен быть записан без погрешности.

#### Методика проверки

Программа проверяется на 24-х тестах. Прохождение каждого теста оценивается в 0,5 балла. Тест из условия задачи при проверке не используется.

#### Примеры

#### Пример №1

| Стандартный ввод  |
|-------------------|
| 105               |
| 1 45              |
| Стандартный вывод |
| 247.5             |

#### Пример программы-решения

Ниже представлено решение на языке Python 3.

## Задача ІІ.1.2.2. Номера домов (18 баллов)

Темы: реализация.

#### Условие

В поселке Березовом на улице Березовой построено n домов с номерами от 1 до n, причем дома с нечетными номерами расположены на одной стороне улицы, а с четными — на другой.

Рано утром дворник вышел к одному из крайних домов на этой улице, который имел номер k, и начал подметать тротуар, двигаясь от одного края улицы к другому краю. Потом он перешел на противоположную сторону улицы и начал подметать тротуар там, двигаясь назад.

Напишите программу, которая выведет номера домов, мимо которых проходил дворник, по известным числам n и k. Для лучшего понимания прочитайте пояснения к примерам.

#### Формат входных данных

На вход в одной строке подается два натуральных числа n и k — количество домов и номер одного из крайних домов на улице,  $4 \le n \le 100$ . Число k может принимать одно из четырех значений: 1, 2, n-1, n.

#### Формат выходных данных

Ваша программа должна вывести через пробел последовательность номеров домов, в том порядке, в котором их проходил дворник.

Если вы программируете на Python, то убрать перенос строки в функции print можно при помощи именованного параметра end, например, print(a,end=' ').

#### Методика проверки

Программа проверяется на 36-ти тестах. Прохождение каждого теста оценивается в 0,5 балла. Тесты из условия задачи при проверке не используются.

#### Примеры

#### Пример №1

| Стандартный ввод  |
|-------------------|
| 7 6               |
| Стандартный вывод |
| 6 4 2 1 3 5 7     |

#### Пример №2

| Стандартный ввод  |
|-------------------|
| 8 1               |
| Стандартный вывод |
| 1 3 5 7 8 6 4 2   |

#### Пояснения к примеру

Рассмотрим первый пример. На улице 7 домов, дворник вышел к дому номер 6. Это означает, что он находится на четной стороне в конце улицы, и далее он будет двигаться к ее началу, проходя мимо домов 6, 4, 2. Потом он перейдет на противоположную сторону к дому номер 1 и пойдет к концу улицы, проходя мимо домов 1, 3, 5, 7.

Во втором примере на улице 8 домов, дворник вышел к дому номер 1. Это означает, что он находится на нечетной стороне в начале улицы, и далее он будет двигаться к ее концу, проходя мимо домов 1, 3, 5, 7. Потом он перейдет на противоположную сторону к дому номер 8 и пойдет к началу улицы, проходя мимо домов 8, 6, 4, 2.

#### Пример программы-решения

Ниже представлено решение на языке Python 3.

```
n,k=map(int,input().split())
if k==1:
    print(*range(1,n+1,2),*range(n-(n%2),0,-2))
elif k==2:
    print(*range(2,n+1,2),*range(n+(n%2)-1,0,-2))
elif k%2==1:
    print(*range(n+(n%2)-1,0,-2),*range(2,n+1,2))
else:
    print(*range(n-(n%2),0,-2),*range(1,n+1,2))
```

#### Задача ІІ.1.2.3. Упорядочивание монет (25 баллов)

Темы: реализация, сортировки, теория графов.

#### Условие

В древнем кладе было найдено n монет различного веса. Каждая из монет была обозначена строчной буквой латиницы. Все обозначения были различными. Монеты были попарно взвешены на чашечных весах. Протокол взвешиваний состоял из n(n-1)/2 строк, каждая строка содержала ровно три символа. Первый и третий символ содержали обозначения монет, а во втором был записан результат сравнения: знак < или знак >. Например, запись d>b означает, что монета d тяжелее монеты b.

Взвешивания очень утомили лаборанта, и он просит вас написать программу, которая упорядочит монеты по возрастанию веса.

#### Формат входных данных

На вход в первой строке подается одно натуральное число n — количество монет,  $4 \le n \le 26$ . Далее в n(n-1)/2 строках записан протокол взвешиваний. Гарантируется, что протокол является корректным.

#### Формат выходных данных

Ваша программа должна вывести одну строку из n символов. Строка должна содержать обозначения монет в порядке возрастания их веса.

#### Методика проверки

Программа проверяется на 25-ти тестах. Прохождение каждого теста оценивается в 1 балл. Тест из условия задачи при проверке не используется.

#### Примеры

#### Пример №1

```
      Стандартный ввод

      4

      b<x</td>

      k>b

      x<k</td>

      b<d</td>

      x>d

      d<k</td>

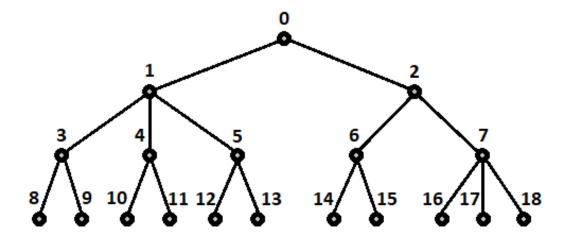
      Стандартный вывод

      bdxk
```

#### Пример программы-решения

Ниже представлено решение на языке Python 3.

## Задача ІІ.1.2.4. 2-3 дерево (25 баллов)


Темы: математика, графы и деревья, реализация.

#### Условие

Упорядоченное корневое дерево называется 2–3 деревом, если для него выполняются следующие условия:

- все узлы, кроме листьев, имеют два или три потомка;
- ullet все листья находятся на одной высоте.

Пример 2–3 дерева приведен на рисунке ниже. Вы должны будете написать программу, которая составит произвольное 2–3 дерево с заданным количеством узлов или определит, что таких деревьев не существует.



#### Формат входных данных

На вход в первой строке подается одно натуральное число n — количество узлов в дереве,  $2 \le n \le 100000$ .

#### Формат выходных данных

Ваша программа должна вывести описание полученного дерева. Узлы дерева должны иметь номера от 0 до n-1 и быть упорядоченными сверху вниз и слева направо, как на рисунке. Для каждого узла, кроме корня, требуется указать номер его непосредственного предка. Вывод состоит из последовательности чисел  $a_1, a_2, \ldots a_{n-1}$ , записанных через пробел, где  $a_i$  это непосредственный предок узла с номером i.

Можно дать и другую интерпретацию. Вывод состоит из последовательности номеров нелистовых узлов, упорядоченных по возрастанию, причем номер каждого узла повторяется столько раз, сколько у него непосредственных потомков.

Если 2–3 дерево с указанным количеством узлов построить невозможно, то требуется вывести -1.

#### Методика проверки

Программа проверяется на 50-ти тестах. Прохождение каждого теста оценивается в 0,5 балла. Тесты из условия задачи при проверке не используются.

#### Примеры

Пример №1

| Стандартный ввод                    |
|-------------------------------------|
| 19                                  |
| Стандартный вывод                   |
| 0 0 1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 7 |

Пример №2

```
Стандартный ввод
5
Стандартный вывод
-1
```

#### Пример программы-решения

Ниже представлено решение на языке Python 3.

```
n=int(input())
  k=1
3 curc=1
4 maxc=1
5
   cnt=[1]
   while maxc<n:
6
        \max c += 3**k
7
        curc+=2**k
        cnt.append(2**k)
9
10
        k+=1
  if curc>n:
11
        print('-1')
12
   else:
13
        for i in range(1,k):
14
            t=min(3*cnt[i-1]-cnt[i],(n-curc)//(2**(k-i)-1))
15
16
            curc += t*(2**(k-i)-1)
            for j in range(i,k):
17
                 cnt[j] += t*(2**(j-i))
18
        m=0
19
        for i in range(k-1):
20
            p=cnt[i]
21
            s=cnt[i+1]
22
            while p>0:
23
                 if s>2*p:
24
                     print(m,m,m,end=' ')
25
                     s-=3
26
                 else:
27
                     print(m,m,end=' ')
28
                     s-=2
29
                 p-=1
30
31
                 m+=1
```

## Третья попытка. Задачи 8–11 класса

## Задача ІІ.1.3.1. Количество нечетных чисел (12 баллов)

Темы: математика, задачи для начинающих.

#### Условие

Задан интервал целых чисел [b;e]. Вы должны написать программу, чтобы определить, сколько нечетных чисел принадлежит этому интервалу.

Обратите внимание, что интервал может быть достаточно большим, и решения, перебирающие все натуральные числа, не будут проходить часть тестов.

#### Формат входных данных

На вход в одной строке подается два целых числа b и e — границы интервала,  $-10^{18} \leqslant b \leqslant e \leqslant 10^{18}$ .

#### Формат выходных данных

Программа должна вывести одно число — количество нечетных чисел в заданном интервале.

#### Методика проверки

Программа проверяется на 24-х тестах. Прохождение каждого теста оценивается в 0,5 балла. Тесты из условия задачи при проверке не используются.

#### Примеры

#### Пример №1

| Стандартный ввод  |
|-------------------|
| -3 8              |
| Стандартный вывод |
| 6                 |

#### Пример №2

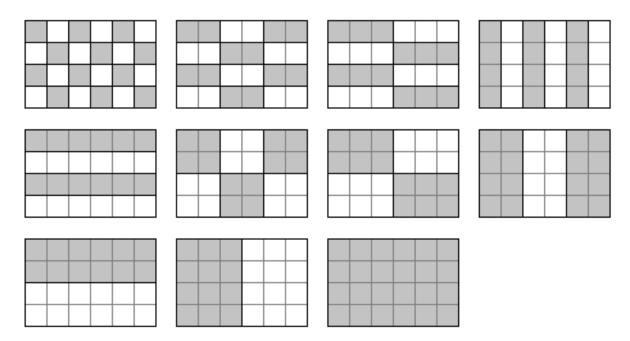
| Стандартный ввод  |
|-------------------|
| 0 0               |
| Стандартный вывод |
| 0                 |

#### Пояснения к примеру

В первом примере указанному интервалу принадлежат шесть нечетных чисел: -3, -1, 1, 3, 5, 7.

Во втором примере интервал не содержит нечетных чисел.

#### Пример программы-решения


```
b, e = map(int,input().split())
print(((e+e%2)-(b-b%2))//2)
```

## Задача ІІ.1.3.2. Наибольший общий делитель прямоугольников (18 баллов)

Темы: математика, задачи для начинающих.

#### Условие

Будем говорить, что прямоугольник P является делителем прямоугольника Q, если прямоугольник Q можно замостить прямоугольниками P, причем все они должны иметь одинаковую ориентацию. Например, делителями прямоугольника  $6\times 4$  будут следующие прямоугольники:  $1\times 1$ ,  $2\times 1$ ,  $3\times 1$ ,  $4\times 1$ ,  $6\times 1$ ,  $2\times 2$ ,  $3\times 2$ ,  $4\times 2$ ,  $6\times 2$ ,  $4\times 3$ ,  $6\times 4$ . Примеры замощений можно увидеть на рисунке ниже. Обратите внимание, что прямоугольники  $a\times b$  и  $b\times a$  считаются одинаковыми.



Ваша задача заключается в написании программы, которая найдет наибольший общий делитель двух заданных прямоугольников. Из двух прямоугольников большим считается тот, площадь которого больше. Наибольших общих делителей может быть два. В этом случае допускается вывести любой из этих двух прямоугольников.

#### Формат входных данных

На вход в двух строках подаются размеры двух прямоугольников. Каждая строка содержит два натуральных числа — длину и ширину прямоугольника. Каждое из чисел не превосходит  $10^{18}$ . Гарантируется, что введенные значения будут таковы, что площадь прямоугольника, который должен получиться в качестве ответа, не превысит  $10^{18}$ .

#### Формат выходных данных

Программа должна вывести через пробел два числа — размеры искомого прямоугольника. Числа можно выводить в любом порядке.

### Mетодика проверки

Программа проверяется на 18-ти тестах. Прохождение каждого теста оценивается в 1 балл. Тесты из условия задачи при проверке не используются.

#### Примеры

#### Пример №1

| Стандартный ввод  |
|-------------------|
| 6 4               |
| 4 3               |
| Стандартный вывод |
| 4 3               |

#### Пример №2

| Стандартный ввод  |
|-------------------|
| 9 10              |
| 15 3              |
| Стандартный вывод |
| 3 5               |

#### Пример №3

| Стандартный ввод  |
|-------------------|
| 3 7               |
| 7 3               |
| Стандартный вывод |
| 3 7               |

## Пример №4

| Стандартный ввод  |
|-------------------|
| 3 7               |
| 4 8               |
| Стандартный вывод |
| 1 1               |

#### Пример программы-решения

```
1  def gcd(a,b):
2     while a>0 and b>0:
3          if a>b:
4          a%=b
5     else:
```

```
b%=a
6
7
        return a+b
   a1,b1=map(int,input().split())
9
   a2,b2=map(int,input().split())
10
   a3=gcd(a1,a2)
11
   b3=gcd(b1,b2)
12
   a4=gcd(a1,b2)
13
   b4=gcd(b1,a2)
14
   if a3*b3>a4*b4:
15
        print(a3,b3)
16
   else:
17
        print(a4,b4)
18
```

Задача ІІ.1.3.3. Справедливый дележ (25 баллов)

Темы: реализация.

#### Условие

Два купца, живущие в разных городах, в далеком плавании купили несколько видов пряностей, и теперь хотят поделить их. Каждый из купцов будет продавать пряности только в своем городе, и цена каждой пряности в этих городах может отличаться. Купцы сочли, что будет справедливым, если они поделят пряности на две доли так, чтобы суммарная стоимость пряностей первой доли в первом городе была равна суммарной стоимости пряностей второй доли во втором городе. Существует несколько способов дележа, удовлетворяющих этому условию, но купцы хотят выбрать из них такой, при котором они получат максимум денег. Пряности являются сыпучим товаром, поэтому они могут быть поделены в любой пропорции

Рассмотрим пример. Есть три вида пряностей: перец, ваниль и корица. Стоимость всей партии перца в первом и втором городах составляет 120 и 200 условных единиц соответственно. Аналогичная стоимость партии ванили равна 180 и 140 условных единиц, а корицы — 100 и 60 условных единиц. Допустимым способом дележа будет, например, следующий: первый купец возьмет всю ваниль, второй — весь перец, а корицу они поделят поровну. Тогда стоимость доли первого купца в первом городе будет равна  $180+100\cdot 0,5=230$ . Стоимость доли второго купца во втором городе составит  $200+60\cdot 0,5=230$ . Стоимости долей равны, поэтому такой вариант дележа допустим. Но более выгодным будет другой вариант. Первый купец возьмет всю корицу и 3/4 ванили, а второй купец — весь перец и 1/4 ванили. Тогда стоимость доли в первом городе составит  $100+180\cdot 0,75=235$  и  $200+140\cdot 0,25=235$  во втором городе. Таким образом, второй вариант является более предпочтительным.

Напишите программу, которая найдет максимальную стоимость долей, при условии того, что дележ будет справедливым.

#### Формат входных данных

На вход в первой строке подается одно натуральное число n — количество видов пряностей,  $1\leqslant n\leqslant 100$ . Во второй строке через пробел записаны n натуральных чисел  $a_1,a_2,\ldots,a_n$  — цены всех видов пряностей в первом городе. Аналогично в третьей строке записаны числа  $b_1,b_2,\ldots,b_n$  — цены всех видов пряностей во втором городе,  $1\leqslant a_i,b_i\leqslant 10^6$ .

#### Формат выходных данных

Программа должна вывести одно число — максимальную стоимость долей. Это число может быть вещественным. Ответ будет считаться верным, если он отличается от ответа жюри не более чем на 0,01.

#### Методика проверки

Программа проверяется на 25-ти тестах. Прохождение каждого теста оценивается в 1 балл. В первых пяти тестах  $n \leq 3$ . В первых 15 тестах  $n \leq 10$ . Тесты из условия задачи при проверке не используются.

#### Примеры

#### Пример №1

```
Стандартный ввод
3
120 180 100
200 140 60

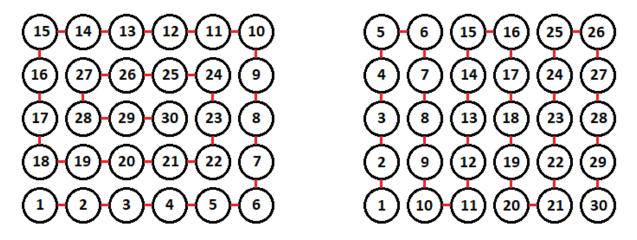
Стандартный вывод
235.0
```

Пример №2

```
Стандартный ввод
1
100
200

Стандартный вывод
66.66666666666667
```

#### Пример программы-решения


```
n=int(input())
2 A=map(float,input().split())
3 B=map(float,input().split())
4 p=list(zip(A,B))
5 p.sort(key=lambda x:x[1]/x[0])
6 	 s1, s2=0, 0
  i,j=0,n-1
7
   while i<=j:
8
       if s1<s2:
9
            s1+=p[i][0]
10
            i+=1
11
12
       else:
           s2+=p[j][1]
13
            j-=1
14
  if s1<s2:
```

## Задача ІІ.1.3.4. Чай с лимоном и сахаром (25 баллов)

Темы: реализация.

#### Условие

На прямоугольном столе в n рядов расставлены стаканы с чаем, в каждом ряде по m стаканов. Аня ходит вокруг стола и бросает в каждый стакан по ломтику лимона. Нумерация стаканов на рисунке слева соответствует той последовательности, в которой Аня переходит от одного стакана к другому. Яна ходит вдоль одного края стола туда и обратно, и бросает в каждый стакан кусочек сахара. Нумерация стаканов на рисунке справа соответствует той последовательности, в которой Яна переходит от одного стакана к другому.



Будем считать, что ломтик лимона и кусочек сахара в один стакан девочки бросают ровно за одну секунду. Напишите программу, которая найдет количество стаканов, в которых через t с лежит и лимон и сахар. В каждом тесте ваша программа должна будет ответить на k запросов. При этом количество и расположение стаканов на столе единое для всех запросов в одном тесте.

#### Формат входных данных

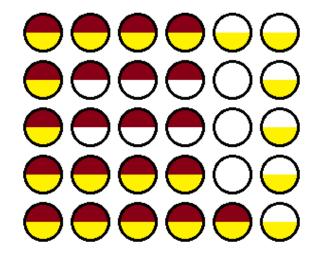
На вход в первой строке подается два натуральных числа n, m и k — количество рядов на столе, количество кружек в каждом ряду и количество запросов,  $1 \le n, m \le 1000, \ 1 \le k \le 10^5$ . Во второй строке через пробел записано k натуральных чисел  $t_1, t_2, \ldots, t_k$  — моменты времени, для которых требуется решить задачу,  $1 \le t_i \le nm$ . Каждый момент времени может встречаться более 1 раза.

#### Формат выходных данных

Программа должна вывести в одной строке через пробел k чисел — ответы для каждого из заданных моментов времени.

#### Методика проверки

Программа проверяется на 25-ти тестах. Прохождение каждого теста оценивается в 1 балл. В первых пятнадцати тестах  $n,m\leqslant 10$ . Тест из условия задачи при проверке не используется.


#### Примеры

Пример №1

| Стандартный ввод  |  |
|-------------------|--|
| 5 6 4             |  |
| 1 21 30 21        |  |
| Стандартный вывод |  |
| 1 15 30 15        |  |

#### Пояснения к примеру

На рисунке ниже показано решение задачи для теста из условия задачи после двадцать первой секунды. Желтым цветом помечены кружки с лимоном, коричневым кружки с сахаром. Из рисунка видно, что в 15 чашках есть и лимон, и сахар.



#### Пример программы-решения

```
1  n,m,k=map(int,input().split())
2  F=[[0 for i in range(m)] for j in range(n)]
3  A=[0]
4  i1,j1,i2,j2,s=0,0,0,0,0
5  dr=0
6  for i in range(n*m):
7   F[i1][j1]+=1
8   F[i2][j2]+=2
9  if F[i1][j1]==3:
```

```
s+=1
10
11
        if (i2!=i1 or j2!=j1) and F[i2][j2]==3:
             s+=1
12
        A.append(s)
13
        if dr==0:
14
             if j1+1==m or (F[i1][j1+1]\&1)==1:
15
                  dr=1
16
        elif dr==1:
17
             if i1+1==n or (F[i1+1][j1]\&1)==1:
18
                  dr=2
19
        elif dr==2:
20
             if j1==0 or (F[i1][j1-1]\&1)==1:
21
22
                  dr=3
23
         else:
             if i1==0 or (F[i1-1][j1]\&1)==1:
24
                  dr=0
25
        if dr==0:
26
             j1+=1
27
        elif dr==1:
28
             i1+=1
29
        elif dr==2:
30
             j1-=1
31
        else:
32
             i1-=1
33
        if j2\frac{2}{2}=0:
34
            if i2==n-1:
35
                  j2<del>+=</del>1
36
             else:
37
                  i2+=1
        else:
39
             if i2==0:
40
                  j2<del>+=</del>1
41
42
             else:
43
                  i2-=1
  for i in input().split():
44
        print(A[int(i)])
45
```

## Четвертая попытка. Задачи 8–11 класса

## Задача ІІ.1.4.1. Сумма элементов списка (12 баллов)

Темы: математика, задачи для начинающих.

#### Условие

Алиса изучает списки в языке Python. По заданию из учебника она написала такую программу.

```
n = int(input())
x = [i%10 for i in range(n)]
print(sum(x))
```

Эта программа читает с консоли натуральное число n и делает список этой длины, состоящий из чисел от нуля до девяти, которые идут по кругу. Например, для n=25 список будет иметь вид:

```
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4]
```

В последней строчке на экран выводится сумма элементов этого списка. Для указанного списка, в частности, будет выведено число 100.

Боб очень недоволен учебником. Он считает, что учебник упускает главное — списки нужны для хранения информации, значимой для работы программы, а это задание можно выполнить, как минимум, без списков, а в идеале — без циклов и условий.

Напишите программу для этого задания, которую Боб сочтет удовлетворительной. Для этого она должна быстро и корректно работать для чисел до  $10^{15}$ .

#### Формат входных данных

На вход подается одно натуральное число n, которое не превосходит  $10^{15}$ .

#### Формат выходных данных

Программа должна вывести одно число — ответ, который напечатала бы приведенная выше программа, если бы она была способна работать со столь большими числами.

#### Методика проверки

Программа проверяется на 24-х тестах. Прохождение каждого теста оценивается в 0,5 балла. Тесты из условия задачи при проверке не используются.

#### Примеры

#### Пример №1

| Стандартный ввод  |
|-------------------|
| 25                |
| Стандартный вывод |
| 100               |

#### Пример №2

| Стандартный ввод  |  |
|-------------------|--|
| 100000000000000   |  |
| Стандартный вывод |  |
| 450000000000000   |  |

#### Пример программы-решения

```
 \begin{array}{ll} 1 & n = int(input()) \\ 2 & return \ str((n//10)*45+(n%10)*(n%10-1)//2) \end{array}
```

## Задача II.1.4.2. Автокорреляционная функция дискретного сигнала (18 баллов)

Темы: математика, реализация.

#### Условие

Автокорреляционная функция часто применяется при анализе сигналов, например, энцефалограммы человека или в радиолокации. Мы будем рассматривать некоторый цифровой сигнал  $a_0, a_1, a_2, \ldots, a_{n-1}$ , где каждое значение  $a_i$  равно 1 или -1. Определим автокорреляционную функцию u(t) по следующей формуле:

$$u(t) = \sum_{0 \leqslant i < n-t} a_i a_{i+t}.$$

Другими словами, если сигнал задан в виде списка из n значений, то чтобы вычислить автокорреляционную функцию в точке t, требуется взять одну копию списка без первых t элементов, другую копию списка без последних t элементов, поэлементно перемножить эти списки, и найти сумму произведений. Рассмотрим пример. Пусть сигнал содержит шесть элементов 1,1,-1,1. Найдем u(2). Исходная последовательность без первых двух элементов имеет вид -1,1,-1,1. Исходная последовательность без последних двух элементов имеет вид 1,1,-1,1. Тогда  $u(2)=(-1\cdot 1)+(1\cdot 1)+(-1\cdot -1)+(1\cdot 1)=2$ 

По такому же принципу можно посчитать и остальные значения для t от нуля до пяти.

$$u(0) = (1 \cdot 1) + (1 \cdot 1) + (-1 \cdot -1) + (1 \cdot 1) + (-1 \cdot -1) + (1 \cdot 1) = 6$$

$$u(1) = (1 \cdot 1) + (-1 \cdot 1) + (1 \cdot -1) + (-1 \cdot 1) + (1 \cdot -1) = -3$$

$$u(3) = (1 \cdot 1) + (-1 \cdot 1) + (1 \cdot -1) = -1$$

$$u(4) = (-1 \cdot 1) + (1 \cdot 1) = 0$$

$$u(5) = 1 \cdot 1 = 1$$

Напишите программу, которая по заданному дискретному сигналу найдет значения автокорреляционной функции для всех t от 0 до n-1.

#### Формат входных данных

На вход в первой строке подается одно натуральное число n- длина сигнала,  $1 \le n \le 100$ . Во второй строке через пробел записаны числа  $a_0, a_1, \ldots, a_{n-1}$ , задающие дискретный сигнал. Каждое значение  $a_i$  равно 1 или -1.

#### Формат выходных данных

Программа должна вывести через пробел n целых чисел — значения автокорреляционной функции  $u(0), u(1), \dots u(n-1)$ .

Если вы программируете на Python, то убрать перенос строки в функции print можно при помощи именованного параметра end, например, print(a,end=',').

#### Методика проверки

Программа проверяется на 18-ти тестах. Прохождение каждого теста оценивается в 1 балл. Тест из условия задачи при проверке не используется.

#### Примеры

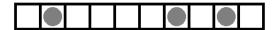
Пример №1

| Стандартный ввод  |  |
|-------------------|--|
| 6                 |  |
| 1 1 -1 1 -1 1     |  |
| Стандартный вывод |  |
| 6 -3 2 -1 0 1     |  |

#### Пример программы-решения

Ниже представлено решение на языке Python 3.

```
n=int(input())
a=list(map(int,input().split()))
for k in range(n):
print(sum([x*y for x,y in zip(a[k:],a[:n-k])]),end=' ')
```


## Задача ІІ.1.4.3. Три фишки (25 баллов)

Темы: игры.

#### Условие

Алиса и Боб играют в следующую игру. Имеется игровое поле в виде последовательности клеток, расположенных друг за другом. На поле расположены три фишки, каждая фишка в своей клетке. За один ход каждый игрок должен переместить одну фишку вправо на произвольное ненулевое число клеток. При этом фишка, которой делается ход, не может встать в клетку, где расположена другая фишка или перепрыгнуть через нее. Выигрывает тот игрок, который смог сделать последний ход.

Рассмотрим пример.

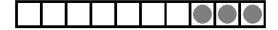


Здесь возможны следующие ходы: сместить правую фишку на одну клетку; сместить среднюю фишку на одну клетку; сместить левую фишку на одну, две, три или четыре клетки.

Алиса всегда делает первый ход, а фишки расставляет Боб. Но Боб не хочет побеждать, он хочет, чтобы Алиса нашла выигрышную стратегию. Поэтому он расставляет фишки так, чтобы Алиса могла гарантированно выиграть.

Например, в приведенной выше позиции Алиса должна сместить самую левую фишку на три клетки.




Далее игра зависит от хода Боба. Предположим, он сместит правую фишку на одну клетку. Тогда Алиса в свой ход сместит левую фишку на одну клетку.



Теперь Боб может ходить только средней фишкой. Если он сдвинет ее на одну клетку, то Алиса сдвинет левую фишку на одну клетку.



Бобу остается вновь ходить средней фишкой. Он сдвинет ее на одну клетку, Алиса сдвинет левую фишку на одну клетку и победит.



Для всех других ходов Боба у Алисы также всегда найдется ход, ведущий к победе.

Вы должны написать программу, которая по заданной позиции найдет ход, после которого Алиса сможет победить независимо от дальнейшей игры Боба. Если выигрышных ходов будет несколько, то Алиса может сделать любой из них. Напомним, что исходная позиция будет такой, что найдется как минимум один ход, гарантированно ведущий к победе.

#### Формат входных данных

На вход подается строка представляющая игровое поле. Пустая клетка в строке обозначена нулем, клетка с фишкой обозначена единицей. Длина строки не превосходит 1000 символов. В строке ровно три единицы.

#### Формат выходных данных

Программа должна вывести строку, представляющую игровое поле после хода Алисы, в том же формате, в котором она поступает на вход.

#### Методика проверки

Программа проверяется на 25-ти тестах. Прохождение каждого теста оценивается в 1 балл. Тест из условия задачи при проверке не используется.

#### Примеры

Пример №1

| Стандартный ввод  |  |
|-------------------|--|
| 0100001010        |  |
|                   |  |
| Стандартный вывод |  |

#### Пример программы-решения

Ниже представлено решение на языке Python 3.

```
x=list(reversed(input()))
   m = [0, 0, 0]
3
  k=0
4 for c in x:
        if c=='0':
5
            m[k] += 1
6
7
        elif k<2:
            k+=1
8
9
        else:
            break
10
   if m[0] > m[2]:
11
        x[m[0]] = '0'
12
        x[m[2]] = '1'
13
14
   else:
        x[m[0]+m[1]+m[2]+2]='0'
15
        x[2*m[0]+m[1]+2]='1'
16
  print(''.join(reversed(x)))
```

## Задача ІІ.1.4.4. Выбор купюр (25 баллов)

Темы: реализация.

#### Условие

В денежной системе Бурляндии выпускаются банкноты всех номиналов от a до 2a включительно. У Алисы в бумажнике есть ровно одна банкнота каждого номинала. Алиса хочет сделать покупку ценой b и расплатиться без сдачи. Кроме того, Алиса хочет, чтобы количество потраченных банкнот было как можно меньшим. Напишите программу, которая поможет Алисе выбрать банкноты так, чтобы сумма их номиналов была равна b, а их количество было наименьшим среди возможных. Если указанным условиям удовлетворяет несколько наборов банкнот, то ваша программа может вывести любой из них.

#### Формат входных данных

На вход в одной строке подается два натуральных числа a и b — минимальный из номиналов купюр и требуемая сумма,  $1\leqslant a\leqslant 100000$ . Гарантируется, что для заданной суммы b существует способ получить ее из имеющихся купюр.

#### Формат выходных данных

Программа должна вывести в одной строке через пробел номиналы всех банкнот, которые потребуются для оплаты. Все номиналы должсны быть упорядочены по возрастанию.

#### Методика проверки

Программа проверяется на 25-ти тестах. Прохождение каждого теста оценивается в 1 балл. Тест из условия задачи при проверке не используется.

#### Примеры

Пример №1

| Стандартный ввод  |
|-------------------|
| 10 99             |
| Стандартный вывод |
| 10 15 17 18 19 20 |

#### Пояснения к примеру

Сумма чисел, указанных в ответе, равна 99, и все числа лежат в диапазоне от 10 до 20 включительно. При этом сумма номиналов пяти самых ценных банкнот меньше чем 99, поэтому оплатить указанную сумму пятью или меньшим числом банкнот невозможно. Однако другие варианты получения требуемой суммы шестью банкнотами возможны, например, 13 14 15 18 19 20. Такой ответ тоже будет засчитан.

#### Пример программы-решения

```
a,b=map(int,input().split())
  up, dn, k=0,0,0
   while up <b:
        up+=2*a-k
4
        dn+=a+k
5
       k+=1
6
   if a>k-1:
8
        t=(b-dn)//(a-k+1)
9
        r=(b-dn)\%(a-k+1)
10
11
  else:
        t,r=0,0
12
  if t==k:
13
       print(*range(2*a-t+1,2*a+1))
14
   else:
15
        print(*range(a,a+k-t-1),a+k-1-t+r,*range(2*a-t+1,2*a+1))
16
```

## Предметный тур. Биология

## Первая попытка. Задачи 8–9 класса

Задача ІІ.2.1.1. (8 баллов)

Темы: ботаника.

#### Условие

В окружающем нас мире можно найти представителей разных царств живых организмов. Для точного определения принадлежности на таком высоком систематическом уровне достаточно знать несколько признаков. Естественно, есть организмы, которые сложно отнести к конкретному царству из-за набора признаков разных царств. Из предложенного списка признаков выберите все, которые соответствуют большинству представителей растений.

- 1. Клетки растений имеют плотные целлюлозные оболочки.
- 2. В клетках большинства растений находятся пластиды хлоропласты.
- 3. Большинство растений ведут прикрепленный образ жизни.
- 4. Запасные вещества в клетках накапливаются в виде крахмала.
- 5. В основном имеют неограниченный рост.
- 6. Растения в основном являются продуцентами.
- 7. Растения в основном являются консументами.
- 8. Растения в основном являются редуцентами.
- 9. В основном имеют ограниченный рост.
- 10. Клетки растений имеют плотные муреиновые оболочки.
- 11. Клетки растений имеют плотные хитиновые оболочки.
- 12. Запасные вещества в клетках накапливаются в виде гликогена.
- 13. Большинство растений свободно перемещаются в пространстве.

Ответ: 1, 2, 3, 4, 5, 6.

## Задача II.2.1.2. (10 баллов)

Темы: физиология.

#### Условие

В 1954 г. две группы исследователей Х. Хаксли и Дж. Хэнсон, также А. Хаксли с Р. Нидергерке предложили теорию скользящих нитей для объяснения механизма мышечного сокращения. В дальнейшем данная теория подтвердилась, благодаря исследованию белков мышц и пониманию, какие вещества задействованы в мышечном сокращении.

Из предложенного списка выберите два белка — один, к которому присоединяется кальций, и другой, для которого освобождается место прикрепления после присоединения кальция в процессе мышечного сокращения скелетных и сердечных мышц.

- 1. Миозин.
- 2. Актин.
- 3. Тропомиозин.
- 4. Тропонин.
- 5. Титин.
- 6. Небулин.

Ответ: 1, 4.

## Задача II.2.1.3. (12 баллов)

Темы: физиология.

#### Условие

Наверняка вы уже ходили на профилактический прием к стоматологу (если еще не ходили, то настоятельно рекомендуем не откладывать) и если требовалось лечение зуба, то врач использовал местную анестезию для снижения чувствительности оперируемого участка. Чаще всего в таком случае используются блокаторы натриевых каналов, которые блокируют возникновение потенциала действия на болевых рецепторах и передачу информации в головной мозг.

Из предложенного списка выберите блокаторы натриевых каналов.

- 1. Тетродотоксин.
- 2. Лидокаин.
- 3. Батрахотоксин.
- 4. Ботулотоксин.
- 5. Тубокурарин.
- 6. Прокаин.

Ответ: 1, 2, 6.

## Задача II.2.1.4. (10 баллов)

Темы: эндокринология.

#### *Условие*

В эндокринной системе человека существует регуляторное взаимодействие между некоторыми железами. Например, выработка и выделение гормонов коры надпочечников возможна только после сигнала от гипофиза в виде специального гипофизарного гормона. Это не единственный пример, существует и другие взаимосвязи.

В данном вопросе нужно сопоставить железы гипоталамо-гипофизарно-тиреоидной системы и гормоны, которые ими вырабатываются.

| 1. | Гипоталамус       | A. | Тиреолиберин            |
|----|-------------------|----|-------------------------|
| 2. | Гипофиз           | Б. | Тиреотропный гормон     |
| 3. | Щитовидная железа | В. | Тироксин, трийодтиронин |

**Ответ:** 1 - A, 2 - B, 3 - B.

## Задача II.2.1.5. (10 баллов)

Темы: биохимия.

#### Условие

Процесс расщепления гликогена называют гликогенолизом. Этот процесс включает активацию фермента фосфорилазы. Гликогенолиз у организма происходит тогда, когда возрастает потребность в энергии. Выберите все гормоны, способные активировать фосфорилазу.

- 1. Норадреналин.
- 2. Адреналин.
- 3. Секретин.
- 4. Глюкагон.
- 5. Инсулин.

#### Пояснения к ответу

Активация фосфорилазы происходит под действием трех гормонов: адреналина, норадреналина и глюкагона. Под действием этих гормонов происходит активный распад гликогена в печени и мышцах. Чаще этот процесс запускается при стрессе или физической нагрузке.

Ответ: 1, 2, 5.

## Задача ІІ.2.1.6. (8 баллов)

Темы: органогенез, онтогенез.

#### Условие

В эмбриогенезе человека происходит последовательное развитие тканей и органов. В постэмбриональном периоде функции некоторых органов могут измениться. Выберите органы плода человека, участвующие в гемопоэзе. В постэмбриональном периоде эта функция изменится на противоположную.

- 1. Легкие.
- 2. Красный костный мозг.
- 3. Желтый костный мозг.
- 4. Печень.
- 5. Селезенка.

#### Пояснения к ответу

На пятой неделе развития плода человека печень становится органом кроветворения. После закладки селезенки в конце первого месяца в нее поступают стволовые клетки крови, и селезенка функционирует как орган кроветворения. В постэмбриональном периоде в печени и селезенке форменные элементы крови разрушаются.

Ответ: 4, 5.

## Задача II.2.1.7. (10 баллов)

Темы: зоология, выделение.

#### Условие

Соединения азота выделяются из организма животных в виде мочевины, аммиака и мочевой кислоты. Соотнесите группы организмов и азотистый экскрет, выделяемый этими животными.

|                | Аммиак | Мочевина | Мочевая кислота |
|----------------|--------|----------|-----------------|
| Ресничные      |        |          |                 |
| инфузории      |        |          |                 |
| Насекомые      |        |          |                 |
| Млекопитающие  |        |          |                 |
| Морские        |        |          |                 |
| костистые рыбы |        |          |                 |
| Пресноводные   |        |          |                 |
| костистые рыбы |        |          |                 |
| Пресмыкающиеся |        |          |                 |

#### Пояснения $\kappa$ ответу

В процессе метаболизма аминокислот, аминогруппа удаляется путем дезаминирования и образует аммиак. Некоторые водные животные выделяют аммиак в неизменном состоянии, а другие синтезируют из него мочевину или мочевую кислоту и в таком виде экскретируют. Вид конечного продукта напрямую связан с условиями жизни. Аммиак очень токсичен, и требуется его быстрое выведение. Выделение мочевой кислоты позволяет максимально сократить потери воды, что характерно для животных, освоивших наземно-воздушную среду и засушливые районы.

#### Ответ:

|                | Аммиак | Мочевина | Мочевая кислота |
|----------------|--------|----------|-----------------|
| Ресничные      | +      |          |                 |
| инфузории      |        |          |                 |
| Насекомые      |        |          | +               |
| Млекопитающие  |        | +        |                 |
| Морские        |        | +        |                 |
| костистые рыбы |        |          |                 |
| Пресноводные   | +      |          |                 |
| костистые рыбы |        |          |                 |
| Пресмыкающиеся |        |          | +               |

## Задача II.2.1.8. (10 баллов)

Темы: биосистемы.

#### Условие

Применение теории управления к биопроцессам позволило глубже понять функциональное взаимоотношение между компонентами системы, организма как системы. Тироксин активирует процессы метаболизма, способствует высвобождению энергии. Соотнесите общесистемные понятия и возможные примеры, иллюстрирующие выработку тироксина.

| 1. | Детектор  | A. | Гипофиз                     |
|----|-----------|----|-----------------------------|
| 2. | Регулятор | Б. | Тироксин                    |
| 3. | Эффектор  | В. | Гипоталамус                 |
| 4. | Выход     | Γ. | Понижение температуры среды |
| 5. | Вход      | Д. | Щитовидная железа           |

#### Пояснения $\kappa$ ответу

Живые организмы представляют собой открытые саморегулирующиеся системы, находящиеся в динамическом равновесии со средой. Компонентами системы являются: вход, детектор, регулятор, эффектор, выход. При обеспечении терморегуляции, температура воздействует на рецепторы, сигнал распространяется в системе и про-исходит нейрогуморальная регуляция температуры тела гипоталамо-гипофизарной системой.

Ответ: 1 - A, 2 - Д, 3 - B, 4 - B,  $5 - \Gamma$ .

## Задача ІІ.2.1.9. (6 баллов)

Темы: молекулярная биология.

#### Условие

За счет каких специфичных веществ происходит дифференциация микроклонов растения?

- 1. Ферменты.
- 2. Фитогормоны.
- 3. Кадгерины.
- 4. Аминокислоты.

Ответ: 2.

## Задача II.2.1.10. (10 баллов)

Темы: клеточная биология.

#### Условие

Клеточная мембрана является одним из основных органоидов клетки. Выберите утверждение, содержащее ложную информацию о свойствах клеточной мембраны.

- 1. Мембрана выполняет такие специфические функции, как восприятие сигнала из внешней среды, генерация потенциала действия.
- 2. Мембрана представляет собой тройной слой фосфолипидов, в который включены другие группы липидов и молекулы неорганических соединений.
- 3. Мембрана выполняет следующие функции: сохранение постоянства внутренней среды, сохранение клеточной структуры, избирательный транспорт веществ.
- 4. Все клетки, которые окружены мембраной, имеют общие черты строения.

Ответ: 2.

## Задача II.2.1.11. (10 баллов)

Темы: микробиология.

#### Условие

Микроорганизмы являются отличными продуцентами пигментов, которые затем можно использовать в различных отраслях промышленности, например, пищевой, фармацевтической, косметической, текстильной. Среди предложенных продуцентов выберите микроорганизм, который более перспективно использовать для получения хлорофилла без внесения генетических модификаций.

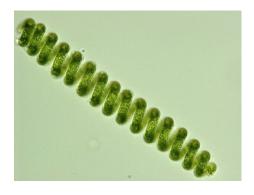



Рис. II.2.1. Arthrospira platensis



Pис. II.2.2. Rhodotorula gracilis



Рис. II.2.3. Pseudomonas aeruginosa

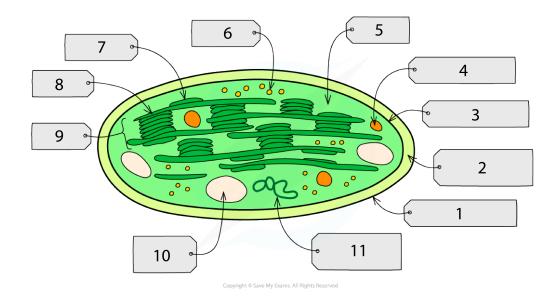


Рис. II.2.4. Escherichia coli

#### Пояснения к ответу

Хлорофилл — жирорастворимый пигмент зеленого цвета, при участии которого происходит процесс фотосинтеза. Поэтому среди предложенных культур ищем наиболее интенсивно окрашенные зеленые колонии фотосинтезирующих микроорганизмов.

- 1. Arthrospira platensis цианобактерия (фототроф), основным пигментом которой являются хлорофиллы и фикоцианины, что делает ее идеальным кандидатом в продуценты хлорофилла.
- 2. Rhodotorula gracilis хемотрофная бактерия, синтезирующая пигменты группы каротиноидов оранжевого цвета.
- 3. Pseudomonas aeruginosa грамотрицательная подвижная аэробная бактерия, возбудитель нозокомиальных инфекций у человека, известна также как синегнойная палочка, так как в процессе жизнедеятельности продуцирует пигменты, вызывающие данную окраску: пиоцианин (сине-зеленого цвета), пиовердин (желто-зеленого цвета) и пиорубин (бурого-цвета). Как мы видим, хотя колонии синегнойной палочки и обладают зеленоватой окраской это не хлорофилл. Еще одной подсказкой в данном случае является то, что Pseudomonas aeruginosa не способна осуществлять процесс фотосинтеза, а значит, не продуцирует хлорофилл.
- 4. Escherichia coli грамотрицательная бактерия, которая является любимым объектом генных инженеров. И хотя генные инженеры из Масачуссетского технологического института (МІТ) научили кишечную палочку «различать» красный, зеленый и синий цвета, и под действием света вырабатывать цветные пигменты, в данной задаче речь идет о «природных» не модифицированных бактериях, поэтому Escherichia coli не подходит.


**Ответ:** Arthrospira platensis.

## Первая попытка. Задачи 10–11 класса

Задача II.2.2.1. (8 баллов)

Темы: ботаника.

#### Условие



Одним из явных отличий клеток растений от клеток животных является наличие хлоропластов, с помощью которых растения фотосинтезируют, а значение фотосинтеза в экосистеме сложно переоценить. На картинке можно увидеть схематичное изображение ультраструктуры хлоропласта. Расставьте цифры соответствующим структурам хлоропласта.

- Рибосома.
- Тилакоил.
- ДНК пластиды.
- Внешняя мембрана.
- Внутренняя мембрана.
- Ламелла.
- Межмембранное пространство.
- Строма.
- Грана.
- Капля липида.
- Гранула крахмала.

**Ответ:** 1 — внешняя мембрана, 2 — межмембранное пространство, 3 — внутренняя мембрана, 4 — капля липида, 5 — строма, 6 — рибосома, 7 — тилакоид, 8 — ламелла, 9 — грана, 10 — гранула крахмала, 11 — ДНК пластиды.

## Задача II.2.2.2. (10 баллов)

Темы: электрофизиология.

#### Условие

Современные электрофизиологические методы позволяют регистрировать широкий спектр электрических сигналов разных органов и тканей человека и использо-

вать их для диагностики различных заболеваний. Сопоставьте органы/процессы и методы исследования их биопотенциалов.

| 1. | Сердце                            | A. | Электромиография           |
|----|-----------------------------------|----|----------------------------|
| 2. | Мозг                              | Б. | Электроретинография        |
| 3. | Сетчатка глаза                    | В. | Электроэнцефалография      |
| 4. | Кожа                              | Γ. | Импедансная плетизмография |
| 5. | Кровообращение                    | Д. | Электрогастроэнтерография  |
| 6. | Скелетные мышцы                   | E. | Электродерматография       |
| 7. | Глаз целиком                      | Ж. | Электроокулография         |
| 8. | Гладкая мускулатура желудка и ки- | 3. | Электрокардиография        |
|    | шечника                           |    |                            |

**Ответ:** 
$$1 - 3$$
,  $2 - B$ ,  $3 - B$ ,  $4 - E$ ,  $5 - \Gamma$ ,  $6 - A$ ,  $7 - Ж$ ,  $8 - Д$ .

# Задача II.2.2.3. (10 баллов)

Темы: гистология.

### Условие

Наш организм состоит из разных типов тканей, которые имеют определенные свойства в соответствии с выполняемой функцией. В данном вопросе мы рассмотрим хрящевую ткань, которая представлена несколькими разновидностями в зависимости от выполняемой функции. Отметьте, из какого хряща состоят приведенные структуры.

|                | Гиалиновый | Эластический | Волокнистый |
|----------------|------------|--------------|-------------|
| Носовая        |            |              |             |
| перегородка    |            |              |             |
| Межпозвоночные |            |              |             |
| диски          |            |              |             |
| Ушная раковина |            |              |             |
| Реберные хрящи |            |              |             |
| Трахея         |            |              |             |

### Ответ:

|                | Гиалиновый | Эластический | Волокнистый |
|----------------|------------|--------------|-------------|
| Носовая        | +          |              |             |
| перегородка    |            |              |             |
| Межпозвоночные |            |              | +           |
| диски          |            |              |             |
| Ушная раковина |            | +            |             |
| Реберные хрящи | +          |              |             |
| Трахея         |            |              | +           |

## Задача II.2.2.4. (12 баллов)

Темы: эндокринология.

### Условие

Некоторые железы в организме человека находятся под прямым управлением специальными отделами головного мозга. Когда из мозга поступает сигнал в виде специальных гормонов, железы внутренней секреции начинают вырабатывать гормоны, которые действуют на клетки-мишени и изменяют свой обмен веществ. Отделы головного мозга действуют непосредственно на железы. Соотнесите какие гормоны какими структурами вырабатываются.

|                        | Гипоталамус | Гипофиз | Половые | Кора надпо- |
|------------------------|-------------|---------|---------|-------------|
|                        |             |         | железы  | чечников    |
| Кортиколиберин         |             |         |         |             |
| Адренокортикотропный   |             |         |         |             |
| Кортизол               |             |         |         |             |
| Кортикостерон          |             |         |         |             |
| Гонадолиберин          |             |         |         |             |
| Фолликулостимулирующий |             |         |         |             |
| гормон                 |             |         |         |             |
| Лютеинизирующий гормон |             |         |         |             |
| Андрогены              |             |         |         |             |
| Эстрогены              |             |         |         |             |

### Ответ:

|                        | Гипоталамус | Гипофиз | Половые | Кора надпо- |
|------------------------|-------------|---------|---------|-------------|
|                        |             |         | железы  | чечников    |
| Кортиколиберин         | +           |         |         |             |
| Адренокортикотропный   |             | +       |         |             |
| Кортизол               |             |         |         | +           |
| Кортикостерон          |             |         |         | +           |
| Гонадолиберин          | +           |         |         |             |
| Фолликулостимулирующий |             | +       |         |             |
| гормон                 |             |         |         |             |
| Лютеинизирующий гормон |             | +       |         |             |
| Андрогены              |             |         | +       |             |
| Эстрогены              |             |         | +       |             |

# Задача II.2.2.5. (10 баллов)

Темы: микробиология.

### Условие

В природе широко распространены бактерии, участвующие в круговороте азота. Без них жизнь на Земле была бы невозможна. Они осуществляют множество химических реакций, и почва насыщается соединениями, содержащими азот в доступной

для растений форме. Однако среди этих процессов есть один, который уменьшает плодородие почвы, но он необходим для круговорота азота в биосфере. Выберите этот процесс.

- 1. Нитрификация.
- 2. Денитрификация.
- 3. Аммонификация.
- 4. Азотфиксация.

### Пояснения к ответу

Азот является биогеном, необходимым для синтеза белков,аминокислот, нуклеиновых кислот и др. соединений. Источником элемента азота является газ азот атмосферы. Преобразовать газ азот в водорастворимые соединения азота могут только бактерии азотфиксаторы и нитрификаторы. Благодаря этим организмам почва насыщается азотсодержащими соединениями, которые обеспечивают поступление азота в растительный организм. А денитрификаторы преобразуют нитраты в молекулярный азот, который возвращается в атмосферу.

Ответ: 2.

Задача II.2.2.6. (10 баллов)

Темы: биотехнология.

#### Условие

В биотехнологиях иногда требуется длительное хранение отобранного биоматериала при очень низких температурах. Чтобы сохранить жизнеспособность после размораживания, образцы обрабатывают разными криопротекторами. Выберите эти вещества — криопротекторы — из предложенного списка.

- 1. Глицерол.
- 2. Этиленгликоль.
- 3. Диметилсулфоксид.
- 4. Метронидозол.
- 5. Пектин

### Пояснения к ответу

Этиленгликоль, глицерол, диметилсульфоксид предотвращают повреждение клеточных культур, крови, эмбрионов, органов. Помещение живых объектов в растворы криопротекторов при замораживании снижает или исключает образование льда внутри клеток и обезвоживание.

Ответ: 1, 2, 3.

# Задача II.2.2.7. (10 баллов)

Темы: молекулярная биология.

#### Условие

В начале 50-х годов 20 века была точно установлена структура связей, соединяющих нуклеотиды одной цепи. Молекулы нуклеиновых кислот обладают способностью к самосборке и самокопированию с образованием различных химических связей. Между какими молекулярными группами за счет ковалентных связей образуется полинуклеотид?

- 1. Пентозами нуклеотидовнуклеотидов.
- 2. Фосфатной группой одного нуклеотида и пентозой другого.
- 3. Азотистыми основаниями и пентозами нуклеотидов.
- 4. Азотистыми основаниями и фосфатной группой нуклеотидов.

### Пояснения к ответу

Все связи в цепях нуклеиновых кислот возникают между пятиуглеродным сахаром и фосфатной группой. Пентозой у ДНК-дезоксирибоза, а у РНК-рибоза.

Ответ: 2.

## Задача II.2.2.8. (5 баллов)

Темы: гистология, энергетический обмен.

#### Условие

В результате цитологических исследований клеток бурого жира, располагающегося на спине новорожденных детей, животных, впадающих в спячку, детеньшей животных, рождающихся голыми, было обнаружено множество митохондрий, мембраны которых пронизаны порами. Выберите все возможные объяснения этой особенности.

- 1. Разность потенциалов на мембране не возникает.
- 2. Протоны водорода проходят свободно.
- 3. Повышается интенсивность фосфорилирования.
- 4. Синтез  $AT\Phi$  не происходит.
- 5. Энергия высвобождается в виде тепла и не запасается.

### Пояснения $\kappa$ ответу

При наличии в митохондриях внутренних мембран, пронизанных порами, протоны проходят свободно, не происходит разделения протонов и электронов по сторонам мембраны, и как следствие, не возникает разность потенциалов на мембране. Энергия не может запасаться в макроэргических связях  $AT\Phi$ , и высвобождается в виде тепла.

Ответ: 1, 2, 4, 5.

## Задача II.2.2.9. (5 баллов)

Темы: молекулярная биология.

#### Условие

За счет каких специфичных веществ происходит дифференциация микроклонов растения?

- 1. Ферменты.
- 2. Фитогормоны.
- 3. Кадгерины.
- 4. Аминокислоты

Ответ: 2.

## Задача II.2.2.10. (10 баллов)

Темы: молекулярная биология.

### Условие

Белки являются биополимерами, которые состоят из мономеров (аминокислот) и выполняют широкий спектр функций внутри организмов. Выберите ложные утверждения о белках, аминокислотах и их свойствах.

- 1. Некоторые бактерии и все растения способны синтезировать все аминокислоты, из которых строятся белки.
- 2. Животные в процессе эволюции обрели способность осуществлять синтез десяти особенно сложных аминокислот, называемых незаменимыми.
- 3. В пищеварительном тракте белки полимеризуются до аминокислот, которые всасываются в кровь и попадают в клетки.
- 4. В клетках из готовых аминокислот строятся собственные белки, характерные для данного организма.
- 5. Белки являются обязательным компонентом всех клеточных структур, и в этом состоит их важная структурная роль.

Ответ: 2, 3.

# Задача II.2.2.11. (10 баллов)

Темы: микробиология.

### Условие

Микроорганизмы являются отличными продуцентами пигментов, которые затем можно использовать в различных отраслях промышленности, например, пищевой,

фармацевтической, косметической, текстильной. Среди предложенных продуцентов выберите микроорганизм, который более перспективно использовать для получения каротиноидов без внесения генетических модификаций.

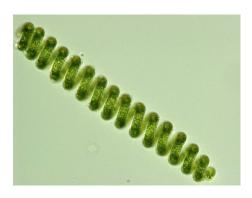



Рис. II.2.5. Arthrospira platensis

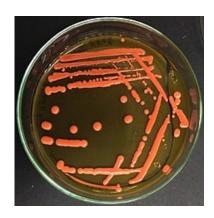



Рис. II.2.6. Rhodotorula gracilis



Рис. II.2.7. Pseudomonas aeruginosa



Рис. II.2.8. Escherichia coli

### Пояснения к ответу

Каротиноиды — жирорастворимые пигменты желтого, оранжевого или красного цвета, поэтому среди предложенных культур ищем наиболее интенсивно окрашенные колонии данных цветов.

- 1. Arthrospira platensis цианобактерия, основным пигментом которой являются хлорофиллы и фикоцианины, однако, также продуцирует и бета-каротин. Преобладающим пигментов бета-каротин не является, поэтому Arthrospira platensis не лучший кандидат в его продуценты.
- 2. Rhodotorula gracilis хемотрофная бактерия, синтезирующая пигменты группы каротиноидов оранжевого цвета идеальный кандидат в продуценты.
- 3. Pseudomonas aeruginosa грамотрицательная подвижная аэробная бактерия, возбудитель нозокомиальных инфекций у человека, известна также как синегнойная палочка, так как в процессе жизнедеятельности продуцирует пигменты, вызывающие данную окраску: пиоцианин (сине-зеленого цвета), пиовердин (желто-зеленого цвета) и пиорубин (бурого-цвета).
- 4. Escherichia coli грамотрицательная бактерия, которая является любимым объектом генных инженеров. И хотя генные инженеры из Масачуссетского технологического института (МІТ) научили кишечную палочку «различать»

красный, зеленый и синий цвета и под действием света вырабатывать цветные пигменты, в данной задаче речь идет о «природных» не модифицированных бактериях, поэтому  $Escherichia\ coli\$ не подходит.

**Ответ:** Rhodotorula gracilis.

# Вторая попытка. Задачи 8–9 класса

# Задача II.2.3.1. (8 баллов)

Темы: ботаника.

#### Условие

На первый взгляд кажется, что растения имеют достаточно простое устройство в сравнении с животными. Тем не менее, высшие растения имеют различные специализированные и неспециализированные ткани, а также набор органов, выполняющих важные функции, которые обеспечивают жизнедеятельность растения. Сопоставьте название ткани растения с ее описанием.

| 1. | Паренхима   | A. | Проводящая ткань сосудистых растений, по которой      |
|----|-------------|----|-------------------------------------------------------|
|    | •           |    | происходит транспорт продуктов фотосинтеза от зеле-   |
|    |             |    | ных частей растения к корням, цветкам и плодам        |
| 2. | Склеренхима | Б. | Механическая ткань, которая встречается в органах по- |
|    |             |    | чти всех высших растений                              |
| 3. | Колленхима  | В. | Основная ткань растений, состоит из неполяризован-    |
|    |             |    | ных клеток, заполняет пространство между другими      |
|    |             |    | тканями растений                                      |
| 4. | Флоэма      | Γ. | Основная водопроводящая ткань наземных сосудистых     |
|    |             |    | растений                                              |
| 5. | Ксилема     | Д. | Механическая ткань растений, располагающаяся в пер-   |
|    |             |    | вичной коре стеблей и листьях, в основном у двудоль-  |
|    |             |    | ных растений                                          |

**Ответ:** 1 - B, 2 - B, 3 - Д, 4 - A,  $5 - \Gamma$ .

# Задача II.2.3.2. (10 баллов)

Темы: высшая нервная деятельность, физиология.

#### Условие

Если с определением инстинкта в плане человека не все так просто, то рефлексы присущи многим живым организмам, в том числе человеку. Рефлексы обычно делят на две большие группы — условные и безусловные, или приобретенные и врожденные. Выберите все рефлексы, относящиеся к безусловным.

### 1. Глотание.

- 2. Мигание.
- 3. Кашель.
- 4. Чихание.
- 5. Настораживание.
- 6. Прислушивание.
- 7. Поворот головы к источнику звука.
- 8. Бег.
- 9. Выполнение устных команд.
- 10. Копирование мимики родителей.

**Ответ:** 1, 2, 3, 4, 5, 6, 7.

## Задача II.2.3.3. (12 баллов)

Темы: физиология.

#### Условие

Анализ крови — это один из важнейших инструментов лабораторной диагностики различных заболеваний. С помощью современных лабораторных анализаторов можно с высокой точностью проводить биохимический анализ крови по широкому спектру показателей. Уровень каких показателей биохимического анализа крови нужно оценить для диагностики подагры? Из предложенного списка выберите блокаторы натриевых каналов.

- 1. Мочевая кислота.
- 2. Глюкоза.
- 3. Холестерин.
- 4. Жирные кислоты.
- 5. Билирубин.
- 6. С-реактивный белок.
- 7. Креатинин.

Ответ: 1, 6, 7.

# Задача II.2.3.4. (10 баллов)

Темы: анатомия.

### Условие

Скелет взрослого человека состоит из 206–208 костей (количество костей копчика вариативно). Кости имеют разную структуру в соответствии с выполняемыми в организме функциями. Установите соответствие типа и названия кости.

| 1. | Трубчатые                      | A. | Лопатка     |
|----|--------------------------------|----|-------------|
| 2. | Губчатые                       | Б. | Лобная      |
| 3. | Плоские (широкие)              | В. | Плечевая    |
| 4. | Смешанные                      | Γ. | Надколенник |
| 5. | Воздухоносные (пневматические) | Д. | Крестец     |

**Ответ:** 1 - B,  $2 - \Gamma$ , 3 - A,  $4 - \square$ , 5 - B.

## Задача II.2.3.5. (8 баллов)

Темы: физиология выделения.

### Условие

При недостаточном потреблении воды, усиленном потоотделении или после приема соленой пищи осмотическое давление возрастает. Активируются процессы, направленные на сохранение гомеостаза. Какие процессы происходят при увеличении осмотического давления крови? Необходимо выбрать все соответствующие процессы.

- 1. Высвобождение АДГ.
- 2. Эпителий дистального канальца и собирательной трубки становится проницаем для воды.
- 3. Уменьшение объема мочи.
- 4. Уменьшение реабсорбции.
- 5. Эпителий дистального канальца и собирательной трубки не проницаем для воды.

### Пояснения к ответу

При недостаточном потреблении воды или после потребления соли осморецепторы гипоталамуса регистрируют повышение осмотического давления. Нервные импульсы передаются к гипофизу и выделяется АДГ. АДГ повышает проницаемость для воды извитого канальца и собирательной трубки. Почки выделяют меньше мочи.

Ответ: 1, 2, 3.

# Задача II.2.3.6. (8 баллов)

Темы: гистология.

### Условие

Одним из признаков, позволяющих дифференцировать эпителий, является форма и местоположение ядра. Соотнесите признаки с соответствующим видом эпителиальной ткани.

| 1. | Тонкие уплощенные клетки. Ядро дисковидное     | A. | Цилиндрический     |
|----|------------------------------------------------|----|--------------------|
|    | расположено в центре клетки                    |    |                    |
| 2. | Клетки узкие и высокие. Ядро расположено у ос- | Б. | Плоский            |
|    | нования клетки                                 |    |                    |
| 3. | При рассмотрении препаратов этой ткани впечат- | В. | Кубический         |
|    | ления о разноуровневом расположении ядер       |    |                    |
| 4. | У клеток пяти или шестиугольные очертания. Яд- | Γ. | Псевдомногослойный |
|    | ро сферическое в центре клетки                 |    |                    |

## Пояснения к ответу

Для плоского эпителия характерны тонкие клетки с дисковидным ядром в центре. Клетки кубического эпителия имеют шестигранные очертания и сферическое ядро в центре клетки. Цилиндрический представлен высокими и узкими клетками и ядрами в основании клеток. Псевдомногослойный отличает разноуровневость клеток прикрепленных к базальной мембране поэтому ядра находятся на разных уровнях.

**Ответ:** 1 - B, 2 - A,  $3 - \Gamma$ , 4 - B.

## Задача ІІ.2.3.7. (8 баллов)

Темы: гомеостаз, нейрогуморальная регуляция.

#### Условие

Обеспечение постоянной температуры тела — важная составляющая гомеостаза. Изучение терморегуляционной активности гипоталамуса показало, что в нем имеются два различных центра. Соотнесите функции терморегуляционных центров гипоталамуса и физиологических проявлений организма.

|                                       | Центр       | Центр          |
|---------------------------------------|-------------|----------------|
|                                       | теплоотдачи | теплопродукции |
| Расширение кровеносных сосудов кожи   |             |                |
| Повышенная секреция тироксина и адре- |             |                |
| налина                                |             |                |
| Угнетение потоотделения               |             |                |
| Снижение метаболической активности    |             |                |
| Увеличение толщины слоя неподвижно-   |             |                |
| го воздуха за счет поднятия волос     |             |                |

### Пояснения к ответу

Гипоталамус состоит из нескольких дисктетных участков и обеспечивает в том числе регуляцию температуры тела. Сохранять температуру позволяет уменьшение отдачи тепла в окружающую среду при угнетении потоотделения, сохранение тепла приповерхностного воздуха. Активный метаболизм увеличивает образование тепла и стимулируется рядом гормонов.

#### Ответ:

|                                       | Центр       | Центр          |
|---------------------------------------|-------------|----------------|
|                                       | теплоотдачи | теплопродукции |
| Расширение кровеносных сосудов кожи   | +           |                |
| Повышенная секреция тироксина и адре- |             | +              |
| налина                                |             |                |
| Угнетение потоотделения               |             | +              |
| Снижение метаболической активности    | +           |                |
| Увеличение толщины слоя неподвижно-   |             | +              |
| го воздуха за счет поднятия волос     |             |                |

## Задача II.2.3.8. (6 баллов)

Темы: иммунология.

### Условие

Нормальная микрофлора кишечника играет существенную роль в обеспечении иммунитета. На значительную роль в жизни человека его микрофлоры указывал более 100 лет назад И. И. Мечников. Выберите все правильные ответы, указывающие на роль нормоофлоры кишечника в этом процессе.

- 1. Выработка антител.
- 2. Стимуляция созревания фагоцитирующих мононуклеаров.
- 3. Выработка ингибиторов роста и размножения патогенных организмов.
- 4. Осуществление фагоцитоза.

### Пояснения к ответу

Нормальная микрофлора кишечника защищает от патогенных микроорганизмов, ингибируя их рост и конкурируя за питательные вещества. Около 80% иммунокомпетентных клеток организма находится в слизистой кишечника, и бактерии выделяют биологически активные вещества, стимулирующие иммунные клетки, что приводит к усилению иммунитета.

Ответ: 2, 3, 4.

# Задача II.2.3.9. (15 баллов)

Темы: основы биотехнологии.

#### Условие

Выберите верную последовательность стадий процесса размножения растений in vitro.

- 1. Содержание коллекции в грунтах.
- 2. Укоренение эксплантов *in vitro*.
- 3. Процесс адаптации к естественной среде.
- 4. Обработка каллуса фитогормонами.

- 5. Выделение эксплантов.
- 6. Перенос экспланта на искусственную питательную среду.
- 7. Получение каллуса.

**Ответ:** 5, 6, 7, 4, 2, 3, 1.

## Задача II.2.3.10. (5 баллов)

Темы: биохимия.

### Условие

Методы разделения веществ позволяют получить в чистом виде все составляющие смесь компоненты. Выберите из предложенного списка методы, относящиеся к разделению веществ.

- 1. Охлаждение.
- 2. Закисление.
- 3. Перемешивание.
- 4. Нагревание.
- 5. Перегонка.
- 6. Адсорбция.
- 7. Фильтрование.
- 8. Отстаивание.

Ответ: 5, 6, 7, 8.

# Задача II.2.3.11. (10 баллов)

Темы: микробиология.

### Условие

Чтобы решить проблему железодефицитной анемии, вы провели генную модификацию цианобактерии *Arthrospira platensis* и улучшили в ней наработку фикоцианина — пигмент-белкового комплекса светло-голубого цвета. Выберите, какую часть лучей видимого спектра отражает фикоцианин.

- 1. Зеленый.
- 2. Голубой.
- 3. Желтый.
- 4. Оранжевый.
- 5. Красный.

### Пояснения к ответу

 $\Phi$ икоцианин — пигмент светло-голубого цвета, значит, он отражает голубую часть видимого спектра.

### Ответ: 2.

# Вторая попытка. Задачи 10–11 класса

Задача II.2.4.1. (8 баллов)

Темы: ботаника.

### Условие

Листья растений в летнее время имеют окраску зеленого цвета. Также можно заметить, что плоды и цветки растений бывают разных цветов, не только зеленого. Цвет, в данном случае, обеспечивается пигментами, которые растения синтезируют, в том числе, чтобы улавливать свет разной длины волны в процессе фотосинтеза. Выберите какие пигменты в каких растениях и водорослях можно встретить.

|             | Высшие   | Бурые     | Красные   | Сине-зеленые |
|-------------|----------|-----------|-----------|--------------|
|             | растения | водоросли | водоросли | водоросли    |
| Фикоэритрин |          |           |           |              |
| Мальвидин   |          |           |           |              |
| Фукоксантин |          |           |           |              |
| Фикоцианин  |          |           |           |              |

### Ответ:

|             | Высшие   | Бурые     | Красные   | Сине-зеленые |
|-------------|----------|-----------|-----------|--------------|
|             | растения | водоросли | водоросли | водоросли    |
| Фикоэритрин |          |           | +         |              |
| Мальвидин   | +        |           |           |              |
| Фукоксантин |          | +         |           |              |
| Фикоцианин  |          |           |           | +            |

# Задача II.2.4.2. (10 баллов)

Темы: электрофизиология.

### Условие

Вам необходимо установить уровень активности нейронов слуховой коры в височной доле головного мозга в режиме реального времени. Какими методами это можно сделать?

- 1. фМРТ.
- 2. Рентген/КТ (без контраста).
- 3. Транскраниальное УЗИ.
- 4. ЭЭГ.
- 5. Биопсия.

6. МЭГ.

7. TMC.

Ответ: 1, 4, 6.

## Задача II.2.4.3. (10 баллов)

Темы: эндокринология.

### Условие

Гормоны в нашем организме бывают разных типов: белково-пептидные, аминокислотные, стероидные и другие. В зависимости от типа они действует через разные рецепторы, обладают разной скоростью выделения в кровь и выведения из метаболизма. Из предложенных гормонов нужно выбрать только аминокислотные.

- 1. Адреналин.
- 2. Норадреналин.
- 3. Тироксин.
- 4. Инсулин.
- 5. Кортизол.
- 6. Кортикостерон.
- 7. Мелатонин.
- 8. Кальцитонин.

Ответ: 1, 2, 3, 7.

# Задача II.2.4.4. (12 баллов)

Темы: гистология.

#### Условие

В нашем организме встречается много морфологически разных эпителиев — они различаются по форме клеток и взаимосвязи с базальной мембраной. Все клетки однослойных эпителиев связаны с базальной мембраной, а в многослойных с базальной мембраной взаимодействует только самый нижний слой клеток. Также по форме клетки бывают плоскими, кубическими и призматическими. Выберите, где располагается тот или иной эпителий.

| 1. | Однослойный плоский эпителий    | A. | Желудок, тонкий и толстый кишеч- |
|----|---------------------------------|----|----------------------------------|
|    |                                 |    | ник                              |
| 2. | Однослойный кубический эпителий | Б. | Носовая полость, трахея, бронхи  |
| 3. | Однослойный призматический эпи- | В. | Эпидермис кожи                   |
|    | телий                           |    |                                  |
| 4. | Мерцательный эпителий           | Γ. | Канальцы почки                   |
| 5. | Многослойный плоский неорогове- | Д. | Мезотелий, покрывает серозные    |
|    | вающий эпителий                 |    | оболочки                         |

6. Многослойный плоский ороговевающий эпителий

Ответ: 1 - Д,  $2 - \Gamma$ , 3 - A, 4 - B, 5 - E, 6 - B.

## Задача II.2.4.5. (10 баллов)

Темы: мокрая биология, цитология.

### Условие

Биологические структуры на препаратах, как правило, прозрачны, и для получения контраста препараты окрашивают. От качества окрашивания во многом зависит результат исследования. Выберите из перечня красителей только те, которые дадут красное окрашивание.

- 1. Сафранин.
- 2. Краситель Фельгена.
- 3. Анилина гидрохлорид.
- 4. Гематоксилин.
- 5. Раствор Шульца.

## Пояснения к ответу

Краситель Фельгена дает при взаимодействии с клеточными структурами пурпурно-красную окраску. Он используется для окрашивания ДНК. Сафранин используют для окрашивания ядер, срезов растительных тканей. Гемотаксилин обеспечивает синее окрашивание срезов животных тканей. Анилина гидрохлорид и раствор Шульца позволяют окрасить лигнин в желтый цвет.

Ответ: 1, 2.

# Задача ІІ.2.4.6. (8 баллов)

Темы: гистология.

### Условие

Одним из признаков, позволяющих дифференцировать эпителий, является форма и местоположение ядра. Соотнесите характеристики тканей с соответствующим видом эпителиальной ткани.

| 1. | Тонкие уплощенные клетки. Ядро дисковидное       | A. | Цилиндрический |
|----|--------------------------------------------------|----|----------------|
|    | расположено в центре клетки                      |    |                |
| 2. | . Клетки узкие и высокие. Ядро расположено у ос- |    | Плоский        |
|    | нования клетки                                   |    |                |
| 3. | При рассмотрении препаратов этой ткани впечат-   | В. | Кубический     |
|    | ления о разноуровневом расположении ядер         |    |                |

4. У клеток пяти или шестиугольные очертания. Яд- Г. Псевдомногослойный ро сферическое в центре клетки

### Пояснения $\kappa$ ответу

Для плоского эпителия характерны тонкие клетки с дисковидным ядром в центре. Клетки кубического эпителия имеют шестигранные очертания и сферическое ядро в центре клетки. Цилиндрический представлен высокими и узкими клетками и ядрами в основании клеток. Псевдомногослойный отличает разноуровневость клеток, прикрепленных к базальной мембране, поэтому ядра находятся на разных уровнях.

**Ответ:** 1 - B, 2 - A,  $3 - \Gamma$ , 4 - B.

## Задача II.2.4.7. (6 баллов)

Темы: размножение организмов, митоз.

#### Условие

Клеточный цикл представляет собой период жизни клетки, включающий следующие стадии: митоз (M), синтетический период (S), пресинтетический (G1), постсинтетический (G2). В каком из предложенных вариантов последовательность событий, происходящих в клетке, указана верно?

- 1. M, G1, G2, S.
- 2. M, G1, S, G2.
- 3. S, M, G1, G2.
- 4. S, G1, G2, M.
- 5. G1, G2, S, M.

#### Пояснения $\kappa$ ответу

Клеточный цикл — это период от одного деления до наступления следующего. После митоза клетка вступает в пресинтетический период, за ним последовательно проходят синтетический и постсинтетический.  $G1\ G2\ S$  составляют интерфазу.

Ответ: 2.

# Задача II.2.4.8. (6 баллов)

Темы: микология, систематика.

#### Условие

Со времени официального открытия антибиотиков прошло около ста лет. Но известно, что во многих древних цивилизациях использовались антибиотики. Лекари прикладывали заплесневевший хлеб к ранам. Такая практика имела место в Древней Сербии, Китае, Индии и Египте. Необходимо выбрать из предложенных групп

организмов ту систематическую группу, представителем которой является организм, с которого началась эра медицинского использования антибиотиков.

- 1. Базидиомицеты.
- 2. Аскомицеты.
- 3. Хитридиомицеты.
- 4. Миксомицеты.

### Пояснения к ответу

Пеницилл представляет собой род Аскомицетных грибов. Представители этого рода продуцируют пенициллин ингибирующий, определенные виды бактерий. род объединяет более 300 видов.

#### Ответ: 2.

## Задача II.2.4.9. (15 баллов)

Темы: основы биотехнологии.

#### Условие

Выберите верную последовательность стадий процесса размножения растений in vitro.

- 1. Содержание коллекции в грунтах.
- 2. Укоренение эксплантов *in vitro*.
- 3. Процесс адаптации к естественной среде.
- 4. Обработка каллуса фитогормонами.
- 5. Выделение эксплантов.
- 6. Перенос экспланта на искусственную питательную среду.
- 7. Получение каллуса.

### **Ответ:** 5, 6, 7, 4, 2, 3, 1.

# Задача II.2.4.10. (5 баллов)

Темы: клеточная биология.

### Условие

Что называется коацерватными каплями?

- 1. Органеллы растительных клеток, запасающие липиды.
- 2. Сгустки, подобные водным растворам желатина, образующиеся в концентрированных растворах белков и нуклеиновых кислот.
- 3. Органеллы животных клеток, запасающие липиды.
- 4. Форма использования питательных сред для выращивания микроклонов.

### Ответ: 2.

## Задача II.2.4.11. (10 баллов)

Темы: микробиология.

#### Условие

Вы успешно создали люминесцирующую кишечную палочку, и теперь вам необходимо наработать ее в большом объеме для проведения исследований. Выберите, какие параметры будут критическими при культивировании.

- 1. Температура питательной среды.
- 2. рН среды.
- 3. Доступ к кислороду воздуха.
- 4. Перемешивание.
- 5. Освещение.

Ответ: 1, 2, 3, 4.

# Третья попытка. Задачи 8-9 класса

## Задача II.2.5.1. (8 баллов)

Темы: ботаника.

### Условие

Если внимательно присмотреться к растению (особенно если это, например, хорошо подготовленный и окрашенный срез листа, и у вас микроскоп с увеличением в 2000 раз), то можно увидеть некоторые органоиды, которые характерны только для растительных клеток. Выберите из списка те структуры, которые можно обнаружить только в растительных клетках разных органов растения и не только с помощью микроскопии.

- 1. Ядро.
- 2. Хлоропласты.
- 3. Хромопласты.
- 4. Клеточная стенка из целлюлозы.
- 5. Комплекс Гольджи.
- 6. Лейкопласты.
- 7. Митохондрии.
- 8. Эндоплазматическая сеть.
- 9. Клеточная стенка из муреина.
- 10. Клеточная стенка из хитина.
- 11. Клеточная мембрана.

Ответ: 2, 3, 4, 6.

## Задача II.2.5.2. (10 баллов)

Темы: физиология.

#### Условие

Установить некоторые заболевания можно по общему анализу крови без исследования биохимических параметров. Если требуется выявить признаки анемии, то на какие показатели общего анализа крови нужно обратить внимание?

- 1. Уровень гемоглобина.
- 2. Количество эритроцитов.
- 3. Количество нейтрофилов.
- 4. Количество тромбоцитов.
- 5. Количество лимфоцитов.
- 6. Количество эозинофилов.
- 7. Количество базофилов.
- 8. Гематокрит.

Ответ: 1, 2, 8.

## Задача ІІ.2.5.3. (10 баллов)

Темы: анатомия.

### Условие

Кровеносные сосуды в нашем организме отличаются не только по направлению движения крови в них (в какую сторону по ним течет кровь), но также и по тому, из каких тканей состоят оболочки сосудов и сколько оболочек присутствует. Сопоставьте типы кровеносных сосудов с их описанием.

| 1. | Артерии   | A. | Состоят из одного слоя клеток эндотелия                  |
|----|-----------|----|----------------------------------------------------------|
| 2. | Артериолы | Б. | Мелкие сосуды, стенки состоят из трех слоев, средний мы- |
|    |           |    | шечный слой развит слабо                                 |
| 3. | Капилляры | В. | Мелкие сосуды, состоят из трех оболочек. В средней обо-  |
|    |           |    | лочке хорошо развиты преимущественно мышечные эле-       |
|    |           |    | менты                                                    |
| 4. | Венулы    | Γ. | Крупные сосуды, стенки тонкие и менее эластичные, в ос-  |
|    |           |    | новном состоят из трех слоев, но второй слой может от-   |
|    |           |    | сутствовать. Некоторые сосуды имеют пучки гладкомы-      |
|    |           |    | шечной ткани во всех трех слоях, могут присутствовать    |
|    |           |    | специальные клапаны                                      |
| 5. | Вены      | Д. | Крупные сосуды, стенки отличаются значительной толщи-    |
|    |           |    | ной и эластичностью, состоят из трех оболочек. В средней |
|    |           |    | оболочке присутствуют и эластические волокна, и мышеч-   |
|    |           |    | ные элементы                                             |

**Ответ:** 1 - Д, 2 - B, 3 - A, 4 - B,  $5 - \Gamma$ .

# Задача II.2.5.4. (8 баллов)

Темы: эндокринология.

#### Условие

Практически все железы эндокринной системы человека находится под контролем головного мозга, и гипоталамо-гипофизарно-надпочечниковая система не является исключением. Расположите гормоны в той последовательности, в которой они выделяются в организме, начиная с головного мозга.

- 1. Адренокортикотропный гормон.
- 2. Кортизол.
- 3. Кортиколиберин.

Ответ: 3, 1, 2.

## Задача II.2.5.5. (10 баллов)

Темы: дыхательная система человека.

### Условие

Гипервентиляционный синдром — это одна из форм нарушения дыхания, при котором интенсивность вентиляции превышает физиологическую потребность. Причиной такого состояния чаще всего является стресс и тревожность. При гипервентиляционном синдроме нарушается кислотно-щелочной баланс крови. Установите правильную последовательность физиологических процессов происходящих при гипервентиляции легких.

- 1. Снижение парциального давления  $CO_2$  в альвеолярном воздухе.
- 2. Возрастание показателя рН крови.
- 3. Отсутствие импульсов от хеморецепторов в дыхательный центр.
- 4. Интенсивное выведение  $\mathrm{CO}_2$  в окружающую среду.
- 5. Уровень  $\mathrm{CO}_2$  в крови и в воздухе альвеол выравнивается.
- 6. Торможение механизма вентиляции.

### Пояснения к ответу

При интенсивном выдохе из организма быстро выводится углекислый газ, который активирует дыхательный центр. Количество углекислого газа в альвеолах и крови выравнивается, кровь защелачивается, нормальная вентиляция легких нарушается.

**Ответ:** 4, 1, 5, 2, 3, 6.

## Задача II.2.5.6. (10 баллов)

Темы: ботаника, адаптации.

#### Условие

Академик Вернадский в учении о биосфере выделил такое свойство живого, как всюдность, то есть способность приспосабливаться к различным условиям и распространяться в биосфере. Как приспособлены к выживанию растения, произрастающие на бедных почвах? Выберите все признаки.

- 1. Высокая степень развития микориз.
- 2. Способность к интенсивной реутилизации элементов минерального питания из отмирающих органов в живые.
- 3. Избыточное потребление, при котором растение запасает элементы питания.
- 4. Высокая скорость роста.
- 5. Большая продолжительность жизни.

### Пояснения к ответу

Растения, произрастающие на бедных минеральными веществами почвах, способны впрок запасать минеральные соединения, и экономно их использовать в метаболизме. Ряд веществ они получают благодаря симбиозу с грибами, и очень активно реутилизируют необходимые вещества из мертвой органики.

Ответ: 1, 2, 3.

## Задача II.2.5.7. (8 баллов)

Темы: кровообращение, работа сердца.

Сердце — жизненно важный орган, обеспечивающий движение крови. Организм осуществляет нейрогуморальную регуляцию работы сердца. В процессе эволюции выработался уникальный механизм, повышающий вероятность выживания индивидуума — автоматия сердца. Из приведенных ниже утверждений, описывающих работу сердца, необходимо выбрать правильные.

- 1. Ацетилхолин является медиатором многих синапсов и тормозит работу сердца.
- 2. Атипичная мускулатура сердца обладает высокой степенью возбудимости и обеспечивает автоматию сердца.
- 3. Систола предсердий обеспечивает движение крови в артерии.
- 4. Наиболее продолжительной по времени в сердечном цикле является систола желудочков.

### Пояснения к ответу

Ацетилхолин и ионы калия оказывают тормозящее действие на сердечную мышцу. Во время систолы желудочков, длящейся 0,3 с, кровь поступает в артерии. Атипичные мышечные волокна способны обеспечивать сокращение сердца благодаря импульсам возникающим в нем самом. Автоматия обеспечивается предсердно-желудочковым узлом, синусо-предсердным узлом и волокнами Гиса и Пуркинье. Ответ: 1, 2.

Задача II.2.5.8. (8 баллов)

Темы: фотосинтез.

### Условие

Фотосинтез — процесс, обеспечивающий существование жизни на Земле. С появлением этого процесса связано стремительное развитие различных форм жизни. Фотоавтотрофные организмы создают первичное органическое вещество из неорганических веществ. В биологии такой процесс называют ассимиляцией. Выберите из перечня условий и веществ те, которые обеспечат образование ассимилятов непосредственно.

- 1. Тепло, вода, углекислый газ, рибулозобифосфат.
- 2.  $HAД\Phi xH_2$  и рибулозобифосфат, углекислый газ,  $AT\Phi$ .
- 3. Рибулозобифосфат, хлорофилл, вода, АТФ.
- 4. Рибулозобифосфат, вода.

Ответ: 2.

Задача II.2.5.9. (10 баллов)

Темы: основы биотехнологии.

### Условие

Методы современной биотехнологии позволяют работать с клетками растений in vitro и создавать каллусные культуры клеток. Что является верным определением для описания процесса каллусогенеза?

- 1. Неорганизованная пролиферации дифференцированных клеток органов растения.
- 2. Неорганизованная пролиферации дедифференцированных клеток органов растения.
- 3. Организованная пролиферации дифференцированных клеток органов растения.
- 4. Организованная пролиферации дедифференцированных клеток органов растения.

Ответ: 2.

Задача II.2.5.10. (10 баллов)

Темы: клеточная биология.

### Условие

Органоиды клетки обеспечивают ряд важнейших функций для поддержания жизнедеятельности клетки. Выберите утверждения, характерные для понятия «кристы».

- 1. Могут иметь вид пластинок или трубочек.
- 2. Входят в состав митохондрии.
- 3. В них происходит окисление водорода.
- 4. Осуществляют вторую стадию кислородного дыхания (цикл Кребса).
- 5. Осуществляют первую стадию кислородного дыхания (цикл Кребса).

Ответ: 1, 2, 3.

## Задача II.2.5.11. (8 баллов)

Темы: микробиология.

#### Условие

Для получения продуцента каротиноидов вы провели генную модификацию цианобактерии *Arthrospira platensis* и улучшили в ней наработку этого вещества оранжевого цвета. Выберите, какую часть лучей видимого спектра отражает бетакаротин.

- 1. Зеленый.
- 2. Голубой.
- 3. Желтый.
- 4. Оранжевый.
- 5. Красный.

### Пояснения к ответу

Бета-каротин — предшественник витамина A, пигмент ярко-оранжевого цвета, содержащийся в большом количестве в грибах, растениях и фруктах.

Ответ: 4.

# Третья попытка. Задачи 10–11 класса

# Задача II.2.6.1. (8 баллов)

Темы: ботаника.

#### Условие

Во всех живых организмах присутствуют биологические пигменты. Пигментами они называются потому, что окрашены в определенный цвет. Некоторые из биоло-

гических пигментов способны фотосинтезировать. Выберите все пигменты, которые являются фотосинтезирующими.

- 1. Некоторые порфирины.
- 2. Фикобилины.
- 3. Каротиноиды.
- 4. Флавоноиды.
- 5. Хиноны.
- 6. Люциферины.
- 7. Меланин.

Ответ: 1, 2, 3.

## Задача II.2.6.2. (10 баллов)

Темы: физиология.

### Условие

Вариабельность сердечного ритма хорошо отражает степень напряжения регуляторных систем организма, которая возникает в ответ на любое стрессорное воздействие активацией гипоталамо-гипофизарно-надпочечниковой и симпатоадреналовой систем, и подходит для оценки функционального состояния организма. Для оценки вариабельности сердечного ритма нужно зарегистрировать R–R интервалы. С помощью каких методов их можно зарегистрировать?

- 1. Электрокардиография.
- 2. Измерение артериального давления.
- 3. Фотоплетизмография.
- 4. Электрическая активность кожи.
- 5. Электромиография.
- 6. Электроретинография.

Ответ: 1, 2, 3.

# Задача ІІ.2.6.3. (8 баллов)

Темы: физиология.

### Условие

Какие принципы введения радиоактивных фармацевтических препараторов чаще всего используются в современной медицине?

- 1. Перорально.
- 2. Ректально.
- 3. Внутривенно.
- 4. Внутримышечно.

5. Подкожно.

6. Интраназально.

Ответ: 1, 3.

# Задача II.2.6.4. (10 баллов)

Темы: физиология.

### Условие

Дыхание является достаточно важным, но одним из самых незаметных процессов. Тем не менее, без воздуха человек может обходиться не более двух минут, в отличие от еды или воды. Важно внимательно относиться к своим легким, которые постоянно контактируют со всем, что мы вдыхаем. Поэтому рекомендуется чаще гулять в лесу, особенно в хвойном, и точно не заниматься бегом вдоль пыльных автострад с большим количеством автомобилей, так как это влияет на объемы и емкости легких. Соотнесите объемы и емкости с их описаниями.

| 1. | Дыхательный объем   | A. | Количество воздуха, которое человек может до- |
|----|---------------------|----|-----------------------------------------------|
|    |                     |    | полнительно вдохнуть после нормального вдоха  |
| 2. | Резервный объем     | Б. | Количество воздуха, остающееся в легких после |
|    | вдоха               |    | максимального выдоха                          |
| 3. | Резервный объем вы- | В. | Наибольшее количество воздуха, которое можно  |
|    | доха                |    | выдохнуть после максимального вдоха           |
| 4. | Остаточный объем    | Γ. | Количество воздуха, остающееся в легких после |
|    |                     |    | спокойного выдоха                             |
| 5. | Жизненная емкость   | Д. | Количество воздуха, которое человек может до- |
|    | легких              |    | полнительно выдохнуть после нормального выдо- |
|    |                     |    | xa                                            |
| 6. | Емкость вдоха       | E. | Максимальное количество воздуха, которое мож- |
|    |                     |    | но вдохнуть после спокойного выдоха           |
| 7. | Функциональная      | Ж. | Количество воздуха, содержащееся в легких на  |
|    | остаточная емкость  |    | высоте максимального вдоха                    |
| 8. | Общая емкость лег-  | 3. | Количество воздуха, которое человек вдыхает и |
|    | КИХ                 |    | выдыхает при спокойном дыхании                |

**Ответ:** 1 - 3, 2 - A, 3 - Д, 4 - B, 5 - B, 6 - E,  $7 - \Gamma$ , 8 - Ж.

# Задача II.2.6.5. (8 баллов)

Темы: эмбриология.

#### Условие

В процессе эмбрионального развития последовательно происходит образование трех зародышевых листков, последующий гистогенез и органогенез. Укажите, какие структуры хордовых развиваются из мезодермы.

- 1. Щитовидная и паращитовидные железы.
- 2. Дентин зубов, гладкая мускулатура.
- 3. Кровь, сердечная мышца.
- 4. Соединительная ткань, кости, хрящи.
- 5. Печень, эпителий органов дыхания.
- 6. Нервная система, хрусталик глаза, эмаль зубов, ороговевающий эпителий.

### Пояснения к ответу

В эмбриогенезе последовательно закладываются эктодерма, энтодерма, мезодерма. Из эктодермы формируются покровные структуры, нервная система; из энтодермы органы пищеварения, эпителий; мезодерма дает начало всем видам соединительной ткани, крови и кровеносной системы. формируется эндокринная система.

Ответ: 2, 3, 4.

## Задача II.2.6.6. (8 баллов)

Темы: цитология, микология.

Грибы были выделены в отдельное царство позже других эукариот. Они имеют не только признаки растений и животных, но и такие особенности строения клетки и процессов, которые позволяют сделать вывод о древнем происхождении этих организмов. Клетка грибов наиболее примитивная из клеток всех эукариотических организмов, живущих в настоящее время. По ряду признаков ее можно считать мезокариотической. Выберите признаки, соответствующие этому факту.

- 1. Небольшой размер генома.
- 2. Сохранение ядерной оболочки при делении, закрытые митоз и мейоз.
- 3. Сохранение ядрышка при митозе.
- 4. Отсутствие конденсации хромосом при делении.
- 5. Разрушение ядерной оболочки и ядрышек во время профазы.
- 6. Конденсации хромосом при делении.

### Пояснения к ответу

По ряду признаков клетка является промежуточной между прокариотической и эукариотичекой, т. е. мезокариотической. Специфическими особенностями ядер грибов являются очень небольшой размер генома (малое количество ДНК на ядро). Примитивным признаком ядер грибов является их поведение при делении: сохранение ядерной оболочки (закрытые митоз и мейоз), деление ядра перетяжкой, сохранение ядрышка при митозе, частое отсутствие метафазной пластинки хромосом или вообще отсутствие конденсации хромосом при делении.

Ответ: 1, 2, 3, 4.

# Задача II.2.6.7. (7 баллов)

Темы: митоз, мейоз.

#### Условие

В предложениях для полного описания процессов деления клеток отсутствуют термины. Закончите предложения, вставив соответствующий термин из списка.

Участки соединения гомологичных хромосом, во время конъюгации в которых в результате разрыва и соединения возможен обмен участками хроматид (хиазм / цитокинез / центромера / бивалент / хроматида / хромосома / дуплет / центриоль)<sup>1</sup>. Процесс разделения цитоплазмы в телофазе между двумя дочерними клетками (хиазм / цитокинез / центромера / бивалент / хроматида / хромосома / дуплет / центриоль)<sup>2</sup>. Участок хромосомы, удерживающий вместе две ее нуклеопротеиновые нити (хиазм / цитокинез / центромера / бивалент / хроматида / хромосома / дуплет / центриоль)<sup>3</sup>. Пара гомологичных хромосом, конъюгирующих между собой (хиазм / цитокинез / центромера / бивалент / хроматида / хромосома / дуплет / центриоль)<sup>4</sup>. Одна из двух нуклеопротеиновых нитей, образующихся в клеточном цикле (хиазм / цитокинез / центромера / бивалент / хроматида / хромосома / дуплет / центриоль)<sup>5</sup>.

### Пояснения к ответу

Хромосома во время профазы мейоза состоит из двух нуклеопротеиновых нитей, соединенных центромерой. Такие нити называют хроматидами. Гомологичные хромосомы сближаются и конъюгируют. Участки тесного сближения — хиазмы. Пара гомологичных конъюгирующих хромосом образует бивалент. После завершения деления ядра наступает разделение цитоплазмы — цитокинез.

**Ответ:** 1- хиазм, 2- цитокинез, 3- центромера, 4- бивалент, 5- хроматида.

## Задача ІІ.2.6.8. (6 баллов)

Темы: зоология.

#### Условие

Медицине известны случаи массовой гибели людей после употребления в пищу традиционно съедобных морских моллюсков. В организме отравившихся был обнаружен сакситоксин. Укажите возможные причины трагедии.

- 1. В период вылова моллюсков массово размножились динофлагелляты.
- 2. Моллюски в результате питания другими организмами, способными к синтезу яда, его аккумулируют.
- 3. Моллюски были неправильно приготовлены.
- 4. Из-за загрязнения моря токсичными отходами яд образовался из других веществ, содержащихся в морской воде.
- 5. Съедобные моллюски мутировали и стали вырабатывать токсин.

### Пояснения $\kappa$ ответу

В морях и океанах иногда происходит массовое размножение динофлагеллят. Эти организмы синтезируют особый токсин — сакситоксин. К этому яду особенно чув-

ствительны теплокровные животные. Моллюски отфильтровывают из воды динофлагеллят, питаясь ими. Сакситоксин не разрушается и аккумулируется в тканях моллюсков.

Ответ: 1, 2.

# Задача II.2.6.9. (10 баллов)

Темы: основы биотехнологии.

### Условие

Методы современной биотехнологии позволяют работать с клетками растений in vitro и создавать каллусные культуры клеток. Что является верным определением для описания процесса каллусогенеза?

- 1. Неорганизованная пролиферации дифференцированных клеток органов растения
- 2. Неорганизованная пролиферации дедифференцированных клеток органов растения.
- 3. Организованная пролиферации дифференцированных клеток органов растения.
- 4. Организованная пролиферации дедифференцированных клеток органов растения.

Ответ: 2.

# Задача II.2.6.10. (15 баллов)

Темы: молекулярная биология.

#### Условие

Белки являются биополимерами, которые состоят из мономеров (аминокислот) и выполняют широкий спектр функций внутри организмов. Выберите верные утверждения о белках, аминокислотах и их свойствах.

- 1. Некоторые бактерии и все растения способны синтезировать все аминокислоты, из которых строятся белки.
- 2. Животные в процессе эволюции обрели способность осуществлять синтез десяти особенно сложных аминокислот, называемых незаменимыми.
- 3. В пищеварительном тракте белки полимеризуются до аминокислот, которые всасываются в кровь и попадают в клетки.
- 4. В клетках из готовых аминокислот строятся собственные белки, характерные для данного организма.
- 5. Белки не являются обязательным компонентом всех клеточных структур, и в этом состоит их важная структурная роль.

Ответ: 1, 4.

## Задача II.2.6.11. (10 баллов)

Темы: микробиология.

#### Условие

Вы успешно модифицировали цианобактерию  $Arthrospira\ platensis$ , и теперь она приносит вам небывалые урожаи ценного белка фикоцианина. Для дальнейших исследований вам необходимо наработать ее в большом объеме. До этого вы уже нарабатывали культуру  $E.\ coli$  для наработки флуоресцентного белка. Среди перечисленных ниже параметров выберите тот, который нужно будет учесть дополнительно, при переходе с культивирования  $E.\ coli$  на  $A.\ Platensis$ .

- 1. Температура питательной среды.
- 2. рН среды.
- 3. Доступ к кислороду воздуха.
- 4. Перемешивание.
- 5. Освещение.

## Пояснения к ответу

Освещение — критический фактор в том случае, когда речь идет о культивировании фотосинтезирующих микроорганизмов, к которым относится цианобактерия  $Arthrospira\ platensis$ . При культивировании  $E.\ coli$  данный параметр можно было не учитывать.

Ответ: 5.

# Четвертая попытка. Задачи 8-9 класса

Задача II.2.7.1. (8 баллов)

Темы: ботаника.

#### Условие

Гуляя осенью по парку, вы наверняка замечали удивительно красивые желтые листья кленов или темно-красные листья рябин и других деревьев, обильно покрывающих все окружающие пространства. При этом можно наблюдать, что деревья сбрасывают листья не только осенью, и для этого существуют определенные причины. Выберите все эти причины.

- 1. Снижение количества солнечного света.
- 2. Высокая соленость воды в почве.
- 3. Низкие температуры окружающей среды.
- 4. Чрезмерное освещение.
- 5. Высокое ультрафиолетовое излучение.
- 6. Заражение галловой тлей.

7. Умеренная летняя температура окружающей среды.

8. Стрижка веток секатором.

9. Созревание плодов.

**Ответ:** 1, 2, 3, 4, 5, 6.

## Задача II.2.7.2. (10 баллов)

Темы: эндокринология.

### Условие

В нашем организме вырабатывается множество гормонов. Часто их действие на организм противоположно — одни активируют процессы, а другие его тормозят. Для регуляции гомеостаза важно, чтобы концентрации веществ были в пределах допустимых значений, это обеспечивает эффективную работу организма. Подберите пары гормонов-антагонистов.

| 1. | Кальцитонин  | A. | Соматостатин |
|----|--------------|----|--------------|
| 2. | Инсулин      | Б. | Паратгормон  |
| 3. | Соматотропин | В. | Лептин       |
| 4. | Грелин       | Γ. | Глюкагон     |

**Ответ:** 1 - B,  $2 - \Gamma$ , 3 - A, 4 - B.

# Задача II.2.7.3. (10 баллов)

Темы: анатомия.

### Условие

В нашем организме множество кровеносных сосудов, они являются частью кровеносной системы, которая снабжает все наши клетки питательными веществами и кислородом и забирает продукты обмена. Выберите, по каким сосудам течет артериальная кровь, а по каким — венозная.

|                    | Артериальная | Венозная |
|--------------------|--------------|----------|
| Аорта              |              |          |
| Легочные вены      |              |          |
| Легочные артерии   |              |          |
| Сонные артерии     |              |          |
| Бедренная вена     |              |          |
| Верхняя полая вена |              |          |

#### Ответ:

|                    | Артериальная | Венозная |
|--------------------|--------------|----------|
| Аорта              | +            |          |
| Легочные вены      | +            |          |
| Легочные артерии   |              | +        |
| Сонные артерии     | +            |          |
| Бедренная вена     |              | +        |
| Верхняя полая вена |              | +        |

## Задача II.2.7.4. (12 баллов)

Темы: физиология.

### Условие

Кроме большого количества эндокринных желез в нашем организме можно найти экзокринные и смешанные железы, которые могут выделять свои сектреты либо во внешнюю среду, либо и в кровь и во внешнюю среду. Определите тип секреции у различных желез, представленных в таблице.

|                      | Внешняя | Внутренняя | Смешанная |
|----------------------|---------|------------|-----------|
| Поджелудочная железа |         |            |           |
| Щитовидная железа    |         |            |           |
| Слюнные железы       |         |            |           |
| Надпочечники         |         |            |           |
| Потовые железы       |         |            |           |

### Ответ:

|                      | Внешняя | Внутренняя | Смешанная |
|----------------------|---------|------------|-----------|
| Поджелудочная железа |         |            | +         |
| Щитовидная железа    |         | +          |           |
| Слюнные железы       | +       |            |           |
| Надпочечники         |         | +          |           |
| Потовые железы       | +       |            |           |

# Задача II.2.7.5. (6 баллов)

Темы: физиология сна.

### Условие

Сон — это периодическое функциональное состояние. Во время сна одна фаза сменяет другую. Появление этих фаз обусловлено активностью различных структур мозга. Научно доказано, что нарушение сна или его недостаток ведет к психическим расстройствам, снижению иммунитета, а лишение сна приводит к смерти. Какую фазу сна характеризуют следующие признаки?

- Наступает после засыпания.
- Самая продолжительная.

• Происходит снижение скорости метаболизма, активность сердечно-сосудистой, дыхательной, пищеварительной систем.

• Мышцы расслаблены, температура тела падает.

1. Быстрый сон.

2. Медленный сон.

3. Поверхностный сон.

4. Дремота.

Пояснения к ответу

Во время медленного сна, который наступает сразу после засыпания и длится

час-полтора снижается обмен веществ и активность всех систем.

Ответ: 2.

Задача ІІ.2.7.6. (6 баллов)

Темы: мокрая биология, внутренняя среда, гомеостаз.

Условие

Важным условием функционирования организма является постоянство параметров внутренней среды. При проведении лабораторных исследований каплю крови перенесли в раствор. Укажите вариант такой среды при помещении в которую, эрит-

роциты не проявят внешних изменений.

1. Гипотонический раствор.

2. Изотонический раствор.

3. Дистиллированная вода.

4. Гипертонический раствор.

Пояснения к ответу

При попадании в гипертонический раствор эритроциты будут терять воду и погибнут. В гипотоническом растворе и дистиллированной воде движение воды направлено в эритроцит. Эритроцит разбухает и лопается. Процессы основаны на явлении

осмоса.

Ответ: 2.

Задача II.2.7.7. (8 баллов)

Темы: микробиология.

Условие

В настоящее время классическая систематика выделяет пять царств живой природы. Представителей каждого царства отличает от представителей других царств

ряд признаков. Из признаков организмов выберите те, которые соответствуют группе организмов, к которым принадлежит кишечная палочка.

- 1. Наследственный материал представлен нуклеоидом.
- 2. Организм гаплоидный.
- 3. Наличие муреина.
- 4. Организм содержит только один вид нуклеиновых кислот.
- 5. Основной тип деления митоз.
- 6. Фотосинтез осуществляют хлоропласты.

### Пояснения к ответу

Кишечная палочка — прокариот. Принадлежит к царству Бактерии. Для бактерий характерно наличие наследственного материала в виде кольцевой ДНКнуклеоида, они гаплоидны, отсутствие мембранных органоидов. Размножается простым делением пополам. В клеточной стенке присутствует муреин.

Ответ: 1, 2, 3.

## Задача II.2.7.8. (10 баллов)

Темы: экология, опыление.

#### Условие

В процессе эволюции растения приспособились к различным способам опыления. Каждому способу опыления соответствуют определенные признаки, позволяющие осуществлять процесс максимально эффективно. Соотнесите признаки групп цветковых растений и особенностей, соответствующих этой группе.

|                                          | Энтомофильные | Анемонофильные |
|------------------------------------------|---------------|----------------|
| Пыльники подвижные, прикрепленные к      |               |                |
| кончикам тычиночных нитей                |               |                |
| Рыльце пестика многолопастное и перистое |               |                |
| Расположение тычинок внутри цветка       |               |                |
| Нектарники хорошо развиты                |               |                |
| Цветки лишены лепестков                  |               |                |

#### Ответ:

|                                          | Энтомофильные | Анемонофильные |
|------------------------------------------|---------------|----------------|
| Пыльники подвижные, прикрепленные к      |               | +              |
| кончикам тычиночных нитей                |               |                |
| Рыльце пестика многолопастное и перистое |               | +              |
| Расположение тычинок внутри цветка       | +             |                |
| Нектарники хорошо развиты                | +             |                |
| Цветки лишены лепестков                  |               | +              |

## Задача II.2.7.9. (10 баллов)

Темы: основы биотехнологии.

#### Условие

Как называется образование в каллусной культуре зародышеподобных структур, способных вырасти в полноценное растение?

- 1. Эмбрионное культивирование.
- 2. Соматический эмбриогенез.
- 3. Регенерационное культивирование.
- 4. Каллусное спорообразование.

### Ответ: 2.

## Задача II.2.7.10. (10 баллов)

Темы: клеточная биология.

#### Условие

Что входит в состав центросомы?

- 1. Пара центриолей.
- 2. Восемнадцать триплетов микротрубочек.
- 3. Триплет микротрубочек.
- 4. Центросфера.
- 5. Триплет центриолей.
- 6. Ядро.
- 7. Лизосомы.
- 8. Девять триплетов лейкопластов.
- 9. Ядрышко.

### Ответ: 1, 2, 4.

# Задача II.2.7.11. (10 баллов)

Темы: микробиология.

#### Условие

Пурпурные бактерии содержат в себе ряд пигментов, позволяющих им осуществлять процесс фотосинтеза: бактериохлорофиллы а и b и каротиноиды. Выберите, какую часть лучей видимого спектра отражают данные бактерии.

- 1. Зеленый.
- 2. Голубой.
- 3. Желтый.

- 4. Оранжевый.
- 5. Красный.

### Пояснения к ответу

Раз мы видим этих бактерий как пурпурных, то они отражают красные лучи.

Ответ: 5.

# Четвертая попытка. Задачи 10–11 класса

## Задача ІІ.2.8.1. (7 баллов)

Темы: ботаника.

### Условие

Если вы посмотрите на экран телефона или ноутбука в выключенном состоянии, то увидите, что он черного цвета — то есть он поглощает весь видимый свет, который на него попадает Чем больше света поглощает экран, тем чернее он выглядит. Этот принцип работает для всего, что окружает нас и определяет цвет предметов. Какой свет поглощают пигменты хлорофиллы?

- 1. Синий.
- 2. Фиолетовый.
- 3. Красный.
- 4. Зеленый.
- 5. Желтый.
- 6. Салатовый.
- 7. Оранжевый.

Ответ: 1, 2, 3, 7.

# Задача II.2.8.2. (10 баллов)

Темы: физиология, высшая нервная деятельность.

### Условие

Если с инстинктами у человека все неоднозначно, то с врожденными рефлексами все более очевидно — они присутствуют и работают сейчас или работали раньше на сохранение целостности организма. Сопоставьте рефлексы новорожденных с их описанием.

| 1. | Рефлекс Бауэра    | A.  | Если ударить по поверхности, на которой лежит ре- |
|----|-------------------|-----|---------------------------------------------------|
| 1. | т сфлекс Вауэра   | 11. |                                                   |
|    |                   |     | бенок, на расстоянии 15 см от его головки, он от- |
|    |                   |     | реагирует приподниманием разогнутых ног и таза    |
|    |                   |     | над постелью, внезапным пассивным разгибанием     |
|    |                   |     | нижних конечностей                                |
| 2. | Рефлекс Галанта   | Б.  | При раздражении кожи спины вдоль позвоночни-      |
|    |                   |     | ка новорожденный изгибает спину, образуется дуга, |
|    |                   |     | открытая в сторону раздражителя                   |
| 3. | Рефлекс Переса    | В.  | Если дотронуться до ладошки малыша пальцем или    |
|    |                   |     | кончиком пеленки он моментально обхватывает их    |
| 4. | Рефлекс Моро      | Γ.  | Если провести пальцами, слегка надавливая, по     |
|    |                   |     | остистым отросткам позвоночника от копчика к      |
|    |                   |     | шее, ребенок кричит, приподнимает голову, разги-  |
|    |                   |     | бает туловище, сгибает верхние и нижние конечно-  |
|    |                   |     | СТИ                                               |
| 5. | Рефлекс Робинсона | Д.  | При укладывании ребенка на живот (голова по       |
|    |                   |     | средней линии) он совершает ползающие движе-      |
|    |                   |     | ния — спонтанное ползанье                         |

Ответ: 1 - Д, 2 - B,  $3 - \Gamma$ , 4 - A, 5 - B.

## Задача II.2.8.3. (10 баллов)

Темы: физиология.

### Условие

Исследования в области нейромаркетинга позволяют более четко понимать желания покупателей и создавать более востребованный продукт. Мы часто не осознаем нашу реакцию на тот или иной продукт, но ее можно отследить виде физиологических показателей. С помощью каких методов исследования можно установить неявные (бессознательные) мотивы покупателей?

- 1. Опрос фокус-группы.
- 2. ЭЭГ.
- 3. МЭГ.
- 4. фМРТ.
- 5. Электроокулография.

Ответ: 2, 3, 4, 5.

# Задача II.2.8.4. (10 баллов)

Темы: физиология.

### Условие

Фтордезоксиглюкоза является наиболее часто используемым радиоактивным химическим препаратом в диагностической ядерной медицине. Основное примене-

ние — онкология, визуализация опухолей. В виде каких продуктов распада выводится фтордезоксиглюкоза из организма пациента после обследования?

- 1. H<sub>2</sub>O.
- $2. CO_2.$
- $3. \text{ CF}_2.$
- 4. CF<sub>4</sub>.
- 5.  $OF_2$ .
- 6. HF.

Ответ: 1, 2.

# Задача II.2.8.5. (10 баллов)

Темы: нервная система.

#### Условие

Различия между отделами нервной системы проявляются в особенностях строения и свойствах. Выберите только те признаки, которые соответствуют парасимпатическому отделу.

- 1. Ганглии расположены рядом с эффектором.
- 2. Снижает порог чувствительности.
- 3. Постганглиозные волокна немногочисленные.
- 4. В эффекторе высвобождается ацетилхолин.
- 5. Выходят из черепного, грудного, поясничного отделов ЦНС.
- 6. Действие генерализированное.

#### Пояснения $\kappa$ ответу

Для парасимпатического отдела характерно замедление активности большинства органов и систем. Предганглиозное волокно длиннее, ганглий расположен вблизи эффектора. Ацетилхолин служит медиатором постганглиозна.

Ответ: 1, 2, 3, 4.

# Задача II.2.8.6. (6 баллов)

Темы: мокрая биология.

#### Условие

После уборки в цитологической лаборатории емкости с криопротекторами и красителями были размещены вместе. Их необходимо разделить в соответствии с назначением и промаркировать.

|                   | Криптопротектор | Краситель |
|-------------------|-----------------|-----------|
| Диметилсульвоксид |                 |           |
| Гематоксилин      |                 |           |
| Сафранин          |                 |           |
| Пропиленгликоль   |                 |           |
| Эозин             |                 |           |
| Глицерол          |                 |           |

## Пояснения $\kappa$ ответу

Пропиленгликоль, глицерол, диметилсульфоксид являются криопротекторами и предотвращают повреждение клеточных культур, крови, эмбрионов, органов. Сафранин используют для окрашивания ядер, срезов растительных тканей. Гемотаксилин, эозин обеспечивает окрашивание животных тканей.

#### Ответ:

|                   | Криптопротектор | Краситель |
|-------------------|-----------------|-----------|
| Диметилсульвоксид | +               |           |
| Гематоксилин      |                 | +         |
| Сафранин          |                 | +         |
| Пропиленгликоль   | +               |           |
| Эозин             |                 | +         |
| Глицерол          | +               |           |

# Задача II.2.8.7. (10 баллов)

Темы: цитология, деление клеток.

#### Условие

Мейоз или редукционное деление — деление ядра эукариотической клетки с уменьшением числа хромосом в два раза. В процессе мейоза состояние и содержание наследственного материала меняется. Мейозом могут делится только диплоидные клетки. Установите соответствие между фазами мейоза и формулой, описывающей хромосомный набор для этой фазы.

| 1. | Телофаза мейоза II | A. | n2c  |
|----|--------------------|----|------|
| 2. | Профаза мейоза I   | Б. | 2n4c |
| 3. | Телофаза мейоза I  | В. | 2n2c |
| 4. | Анафаза мейоза II  | Γ. | nc   |

#### Пояснения к ответу

В профазу мейоза I вступают клетки с диплоидным набором. В интерфазе происходит репликация ДНК. В телофазе мейоза образуются две дочерние гаплоидные клетки, содержащие двухроматидные хромосомы. В анафазе мейоза II к полюсам клетки расходятся сестринские хроматиды, которые после расхождения становятся самостоятельными хромосомами. Телофаза завершается образованием четырех гаплоидных клеток.

Ответ:  $1 - \Gamma$ , 2 - B, 3 - A, 4 - B.

# Задача II.2.8.8. (8 баллов)

Темы: медицина, нарушение обмена веществ.

#### Условие

В любой сказке, легенде, суеверии, которые создавало человечество, всегда есть реалистическая основа. Соотнесите особенности персонажей этих историй и возможные болезни, вызвавшие эти изменения.

| 1. | Великан Голиаф         | A. | Гипофункция гипофиза. Недостаток СТГ    |
|----|------------------------|----|-----------------------------------------|
| 2. | Вампиры                | Б. | Порфирия                                |
| 3. | Мальчик с пальчик      | В. | Гиперфункция щитовидной железы. Базедо- |
|    |                        |    | ва болезнь                              |
| 4. | Красавица мачеха, пре- | Γ. | Акромегалия                             |
|    | вратившаяся в ведьму   |    |                                         |

#### Пояснения к ответу

Голиаф обладал рядом признаков, кроме гигантского роста, которые характерны для акромегалии и гигантизма. Например, отсутствие быстрых реакций, ограниченное зрительное поле, хрупкость костей, что позволило мальчику его победить. Одна из форм порфирии вызывает болезненные реакции на свет, упадок сил в дневное время, красная окраска зубов, гипертрихоз и другие признаки обезображивающие людей. Гипофизарные карлики имеют очень маленький рост. Гормональные нарушения, связанные с гиперфункцией щитовидной железы, вызывают повышенную раздражительность, преобладания негативных психологических реакций, радикальные изменения внешности.

Ответ:  $1 - \Gamma$ , 2 - B, 3 - A, 4 - B.

# Задача II.2.8.9. (10 баллов)

Темы: основы биотехнологии.

#### Условие

Как называется образование в каллусной культуре зародышеподобных структур, способных вырасти в полноценное растение?

- 1. Эмбрионное культивирование.
- 2. Соматический эмбриогенез.
- 3. Регенерационное культивирование.
- 4. Каллусное спорообразование.

#### Ответ: 2.

# Задача II.2.8.10. (5 баллов)

Темы: общая биология.

#### Условие

Физиология растений знает немало видов проявления такого свойства живого, как раздражимость. Все живые организмы реагируют на воздействия из внешней или внутренней среды. Для представителей разных групп организмов проявления раздражимости специфично, но есть примеры одинаковых проявлений этого свойства у растений и животных. Выберите такие примеры.

- 1. Тропизмы.
- 2. Таксисы.
- 3. Фотопериодизм.
- 4. Гуттация.
- 5. Настии.

#### Пояснения $\kappa$ ответу

Фотопериодизм — это реакция растений, животных и др. на суточный ритм освещенности, продолжительности светового дня. Таксисы представляют собой двигательные реакции на односторонне действующий стимул. Свойственны передвигающимся организмам. Например, хламидомонаде и инфузории.

Ответ: 2, 3.

# $3 a \partial a$ ча II.2.8.11.~~(10~ баллов)

Темы: микробиология.

#### Условие

Вы успешно модифицировали анаэробную спорообразующую палочку Clostridium butyricum ВКПМ В-9619, и теперь она дает еще больший выход масляной кислоты. Для дальнейших исследований вам необходимо наработать ее в большом объеме. До этого вы уже нарабатывали культуру  $E.\ coli$  для наработки флуоресцентного белка. Среди перечисленных ниже параметров выберите тот, который будет кардинально отличаться при переходе с культивирования  $E.\ coli$  на  $Clostridium\ butyricum$ .

- 1. Температура питательной среды.
- 2. рН среды.

- 3. Доступ к кислороду воздуха.
- 4. Перемешивание.
- 5. Освещение.

#### Пояснения к ответу

В данном случае кардинально отличаться будут условия по обеспечению кислородом воздуха:  $Clostridium\ butyricum\ BKПМ\ B-9619$  — облигатный анаэроб, для которого кислород воздуха губителен. В случае с  $E.\ coli$ , факультативными анаэробами, требования к доступу кислорода не такие строгие, так как они способны жить как в аэробных, так и в анаэробных условиях.

Ответ: 3.

# Инженерный тур

# Задача II.3.1. Среда программирования Arduino IDE (15 баллов)

Темы: Arduino, функции, математические вычисления.

#### Условие

В программе ниже весь код с вычислениями помещен в функцию setup(). Цикл while будет выполняться до тех пор, пока верно условие a > b. В теле цикла while происходит изменение значений переменных a и b. После окончания работы цикла значения переменных a и b выводятся в монитор порта.

```
int a = \ldots;
int b = 0;
int x, y;
void setup() {
    x = 3;
    y = x * 2;
    Serial.begin(9600);
    while (a > b) {
        a = a - x;
        b = b + y;
    Serial.print (a);
    Serial.print (",");
    Serial.println (b);
}
void loop() {
}
```

Определите, какое начальное значение имела переменная а (в коде на месте значения проставлено многоточие), если известно, что в монитор порта была выведена строка: «34,42». В поле ответа введите целое число.

#### Решение

Для начала обратим внимание на значения переменных **a** и **b** после выполнения цикла: a=34, b=42. Начальное значение (до цикла) переменной **b** мы также знаем, оно равно нулю. Каждую итерацию цикла значение переменной **b** увеличивается на 6 (так как  $y=x\cdot 2=3\cdot 2=6$ ). Значит, переменная **b** увеличивалась всего 42/6=7 раз. А это, в свою очередь, означает, что и значение переменной а должно было уменьшаться 7 раз, причем это значение каждую итерацию цикла уменьшается

на x=3. То есть в целом значение переменной а уменьшилось на  $7\cdot 3=21$ . Прибавим это значение к конечному значению переменной а (после выполнения цикла), получаем: 34+21=55.

Ответ: 55.

# Задача ІІ.3.2. Последовательный интерфейс (15 баллов)

Темы: Arduino, монитор порта, плоттер, светодиод, последовательный интерфейс.

#### Условие

Для вывода значений переменных (например, значений с сенсора) в процессе разработки программ для микроконтроллерной платы Arduino эти данные передают на компьютер, где их можно отобразить, используя встроенные в Arduino IDE инструменты: монитор порта (для отображения символьной информации) и плоттер (для вывода графиков, строящихся по числовым значениям). Такая передача данных от контроллера к компьютеру (и от компьютера к контроллеру) производится по последовательному интерфейсу (Serial). В проекте, представленном ниже, светодиод управляется данными, поступающими с компьютера. Светодиод был подключен ко второму (2) цифровому контакту Arduino. При отправке из монитора порта символа «1» светодиод включается, при отправке символа «0» светодиод выключается. Программа, загруженная на контроллер, представлена на рисунке далее

```
char s = 0;
int t = 500;
void setup(){
    pinMode (2, OUTPUT) ;
    Serial.begin (9600);
}
void loop() {
    while (Serial.available () ) {
        s = Serial.read();
        if (s == '1')
            digitalWrite (2, HIGH);
        if (s == '0')
            digitalWrite(2, LOW);
        delay(t);
        t += 50;
    }
}
```

Для эксперимента в поле ввода монитора порта был введен не один символ, а целая строка «1100101011». После этого была нажата кнопка «Отправить». При этом светодиод несколько раз последовательно включался и выключался на определенное время.

Определите суммарное время в мс, в течение которого светодиод был включен. В поле ответа введите целое число без указания единиц размерности.

Пример ввода ответа: 1078.

#### Решение

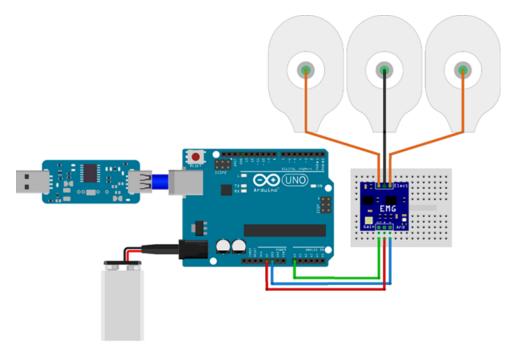
Так как в коде программы данные считываются из последовательного интерфейса посимвольно, то строка «1100101011» будет считана посимвольно «1», «1», «0», «0», «1», «0», «1», «0», «1», «0», «1». При этом при считывании «1» светодиод будет включаться, а при считывании «0» $\ddot{E}$ — выключаться. Значит нам надо подсчитать количество включений (их всего 6) и узнать, на какое время включался светодиод, то есть определить аргумент функции delay(). Аргументом функции delay() является значение переменной t. Начальное значение переменной t=500. Также видно, что это значении при считывании каждого символа (не важно «0» или «1») будет увеличиваться на 50 мс.

Длительности включения/выключения будут такими.

| «1» | «1» | «O» | «O» | «1» | «O» | «1» | «O» | «1» | «1» |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 500 | 550 | 600 | 650 | 700 | 750 | 800 | 850 | 900 | 950 |

Складываем значения из таблицы, соответствующие включениям светодиода:

$$500 + 550 + 700 + 800 + 900 + 950 = 4400.$$

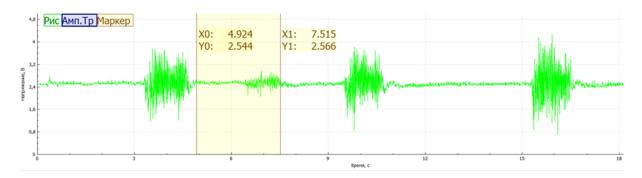

Ответ: 4400.

# Задача ІІ.З.З. Двоичный мио-код (15 баллов)

Темы: электромиограмма, интерфейс, шифрование, логика, системы счисления.

#### Условие

В представленном ниже проекте человеко-машинный интерфейс переводит сокращения мышцы оператора в двоичный код. Схема такого человеко-машинного интерфейса представлена на рисунке ниже.




Известно, что программа, загруженная в микроконтроллер, работает по следующему принципу:

- 1. Если за 3 с измерения амплитуда (величина изменения) сигнала ЭМГ становилась больше, чем 1,6 В, то сигнал кодировался, как «1».
- 2. Если за 3 с измерения амплитуда (величина изменения) сигнала ЭМГ была на всем интервале меньше, чем 1,6 B, то сигнал кодировался, как «0».

Запись «1» и «0» при формировании двоичного числа осуществлялась справа налево (то есть первым записывался старший разряд числа).

Рассмотрите полученный график электромиограммы на рисунке ниже (вы можете его скачать правой кнопкой мыши, если вам необходимо увеличить масштаб рисунка). Определите, какое число было закодировано и переведите его в десятичную форму. В поле ответа запишите полученное число в десятичной форме.



Пример ввода ответа: 78.

#### Решение

Рассмотрим ось x — это ось времени. Деления нанесены через каждые 3 с. Значит, надо определить, была ли амплитуда сигнала больше или меньше 1,6 В в указанных на временной оси интервалах (0–3, 3–6, 6–9, 9–12, 12–15, 15–18). Амплитуда — это величина изменения сигнала на данном временном интервале, то есть разница максимального и минимального значений для данного интервала. Получаем:

- для интервала (0, 3): амплитуда меньше, чем 1,6 B, записываем «0»;
- для интервала (3, 6): амплитуда больше, чем 1,6 B, записываем «1»;
- для интервала (6, 9): амплитуда меньше, чем 1,6 B, записываем «0»;
- для интервала (9, 12): амплитуда больше, чем 1,6 В, записываем «1»;
- для интервала (12, 15): амплитуда меньше, чем 1,6 B, записываем «0»;
- для интервала (15, 18): амплитуда больше, чем 1,6 B, записываем «1».

Записываем число (первое число записываем в старший разряд): 010101 = 10101. Переводим в десятичную систему счисления: 21 (16 + 0 + 4 + 0 + 1).

Ответ: 21.

# Задача ІІ.3.4. Задача на программирование (20 баллов)

Темы: программирование, функции, анализ данных, расчет метрик, список.

#### Условие

Как известно, сигнал электромиограммы (ЭМГ) может быть использован для построения человеко-машинных интерфейсов, которые используются для управления различными техническими устройствами (например, бионическим протезом руки). Анализ сигнала ЭМГ и выделения в нем специфических признаков позволяет строить сложные системы управления различными устройствами.

В данной задаче вам требуется вычислить один из признаков. Напишите программу для определения среднего абсолютного значения M, которое рассчитывается по следующей формуле:

$$M = \frac{1}{N} \sum_{i=1}^{N} |X_i|,$$

где  $X_i$  – i-е значение сигнала ЭМГ, N – общее количество отсчетов ЭМГ в предоставленной записи.

#### Формат входных данных

На вход подается строка значений сигнала в виде последовательности целых чисел, разделенных запятой.

#### Формат выходных данных

Программа должна возвращать одно число — среднее абсолютное значение M.

#### Примеры

### Пример №1

| Станда  | ртный   | ввод    |        |        |        |        |         |        |        |
|---------|---------|---------|--------|--------|--------|--------|---------|--------|--------|
| -0.037, | -0.167, | -0.238, | 0.336, | 0.046, | 0.024, | 0.324, | -0.108, | 0.340, | -0.310 |
| Станда  | ртный   | вывод   |        |        |        |        |         |        |        |
| 0.193   |         |         |        |        |        |        |         |        |        |

#### Решение

Составим программный код, осуществляющий вычисления согласно формуле из условия задачи:

- 1. считываем исходные данные и формируем список из строк с отдельными числами (строчка 2);
- 2. конвертируем строковые данные в числа (строчка 4);
- 3. вычисляем абсолютное значение для каждого числа (строчка 6);
- 4. далее вычислим среднее значение как сумму по списку, деленную на длину списка (строчка 8).

#### Пример программы-решения

Ниже представлено решение на языке Python 3.

```
1 #считываем данные и формируем список из строк с отдельными числами
2 data_txt = input ().split(',')
3 #конвертируем строки в числа
4 data = [ float( val ) for val in data txt ]
5 #вычисляем абсолютное значение для каждого числа
6 data abs = [abs(x) for x in data]
7 #вычисляем среднее
8 ave = sum( data abs ) / len( data abs )
9
10 print ( ave )
```

# Задача ІІ.3.5. Анализ электромиограммы (ЭМГ) (15 баллов)

Темы: физиология, электромиограмма, работа с данными, построение графиков.

#### Условие

В данной задаче вам предстоит осуществить анализ электромиограммы (ЭМГ) — электрических сигналов, считываемых с мышцы или группы мышц, возникающих при ее напряжении.

Скачайте файл с записью сигнала ЭМГ: https://disk.yandex.ru/d/ZpTFpmxEy o43Dg.

Формат записи данных в файле:

```
0.132027 4.92544
0.235786 4.92554
```

Первый столбец — время (c), второй столбец — значение оцифрованного сигнала  $ЭМ\Gamma$  в соответствующие моменты времени. Значения в строке разделены пробелом.

Постройте по данным из файла график сигнала ЭМГ. Подсчитайте число наблюдаемых на графике напряжений мышцы. В поле ответа введите целое число.

#### Решение

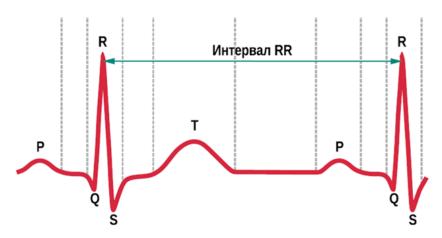
На ЭМГ-сигнале при напряжении мышц возникают так называемые «пучности» — обособленные области, в которых величина сигнала значительно отклоняется от среднего уровня в положительную и отрицательную стороны. Количество этих «пучностей» на графике и есть количество напряжений мышцы, которое надо посчитать в данной задаче.

Строим график ЭМГ-сигнала по данным из файла.



На графике есть 3 «пучности», соответственно, наблюдается три напряжения мышцы.

#### Ответ: 3.


# Задача II.3.6. Анализ электрокардиограммы (ЭКГ) (20 баллов)

Темы: физиология, электрокардиограмма, работа с данными, построение графиков.

**Особенности начисления баллов**: полный балл в случае правильного ответа в пределах погрешности, ноль баллов в случае неправильного ответа.

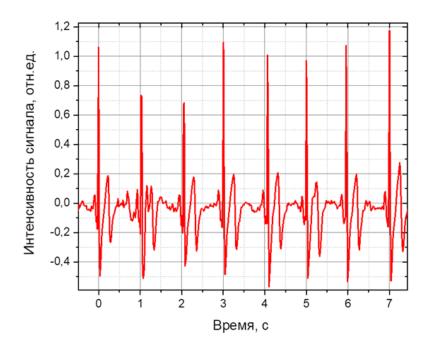
#### Условие

Электрокардиография — это метод измерения электрической активности сердца, который основан на измерении изменения напряжения электрического поля между разными отделами сердца. На рисунке ниже представлен пример графика электрокардиограммы (ЭКГ). Наиболее высокий зубец соответствует одному сокращению сердца, он имеет название зубец R.



Скачайте файл с записью сигнала ЭКГ: https://disk.yandex.ru/d/LTa21TRiG SmoMQ.

Формат записи данных в файле:


0.132027 4.92544 0.235786 4.92554

Первый столбец — время (c), второй столбец — значение оцифрованного сигнала ЭМГ в соответствующие моменты времени. Значения в строке разделены пробелом.

Постройте по этим данным график сигнала  $\Im K\Gamma$  и рассчитайте среднее значение частоты сердечных сокращений (ЧСС) в мин. В поле ответа введите только число, без указания единиц размерности.

#### Решение

Построим график сигнала ЭКГ по представленным данным. График можно построить, например, с помощью инструментов Excel.



Частоту сердечных сокращений (ЧСС) можно рассчитать как количество R-пиков (за время измерения), поделенное на время измерения.

За время от 0 до 7 с наблюдается 7 R-пиков, соответственно 7 сердечных сокращений за 7 с, т. е. одно сокращение в секунду и 60 сокращений в минуту. Ввиду того, что для расчета можно взять разные участки измерений, то в данной задаче допускается погрешность  $\pm 3$  удара в мин.

**Ответ:**  $60 \pm 3$ .