

Многопрофильная инженерная олимпиада «Звезда» «Биотехнологии»

9-10 классы

Заключительный этап

2023-2024

Биотехнологии помогают решать проблемы в разных видах хозяйственной деятельности человека, в том числе предотвращать загрязнение окружающей среды опасными отходами. Сегодня вам предстоит решить ряд задач для рациональной переработки навоза на ферме с получением микробного белка для кормления животных.

Внимание! Максимальный балл, указанный в скобках, начисляется только при наличии решения и ответа.

Задача № 1. (*5 баллов*) Какой компонент питательной среды используется как основной при получении белковой биомассы ферментации природного газа?

- А) глюкоза
- Б) углекислый газ
- В) метан
- Г) уксусная кислота

Ответ: В

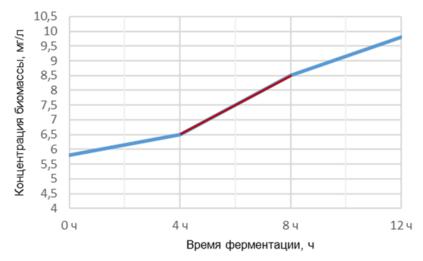
За верный ответ -5 баллов. Если обозначено 2 ответа, один из которых верный - баллы не начисляются

Задача № 2. (20 баллов). Рассчитайте суточную потребность фермы в 500 голов коров в белковой биомассе, если потребность в сыром протеине с поступающим кормом одной коровы составляет 1,5 кг/сут. Доля сырого протеина из белковой биомассы в рационе должна составлять 20%. При этом доля сырого протеина в белковой биомассе, получаемой на метане, составляет 75%.

Ответ: 200 кг/сут

Решение. Найдем потребность в сыром протеине коров на ферме: $500\times1,5/100=750$ кг/сут. Найдем количество сырого протеина в рационе, поступающего из белковой биомассы: $750\times20/100=150$ кг. Найдем потребность фермы в белковой биомассе с учетом концентрации в ней сырого протеина: $150\times100/75=200$ кг/сут

Ответ верный и представлено решение – 20 баллов


Логика ведения расчетов верная, но имеются вычислительные ошибки — 10 баллов

Ответ верный, не представлено решение – 2 балла

Задача № 3. (*20 баллов*) Для оценки эффективности использования отдельных видов микроорганизмов для продуцирования белковой массы можно использовать показатель скорости роста. Скорость роста V (г/л·ч) характеризует прирост биомассы за единицу времени и рассчитывается по формуле:

$$V = \frac{\Delta X}{\Delta t}$$

Определите скорость роста биомассы (г/л·ч) на выделенном участке кривой.

Ответ: 0,0005 г/л·ч

Решение. Находим прирост биомассы за выделенный период времени: (8,5-6,5) = 2 мг/л = 0,002 г/л. Находим период времени: 8-4=4. Определяем скорость роста биомассы: 0,002/4=0,0005 г/л·ч.

Ответ верный и представлено решение – 20 баллов

Логика ведения расчетов верная, но имеются вычислительные ошибки – 10 баллов

Ответ верный, не представлено решение – 2 балла

Задача № 4. (*20 баллов*) На рисунке представлена кинетика роста микроорганизмов при периодическом культивировании. Рассмотрите внимательно график и сопоставьте номер фазы с характеристикой процесса в данной фазе.

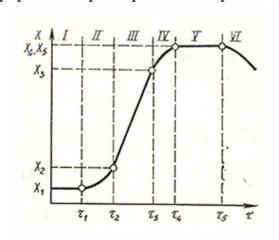


Рисунок — Кинетика роста микроорганизмов при периодическом культивировании: $X_1 ... X_5$ — плотность популяции, $\tau_1 ... \tau_5$ — время.

Фаза	Характеристика
роста	
I	А) фаза затухающего роста культуры
II	Б) снижение скорости роста вплоть до достижения нулевого значения
III	В) фаза отмирания, или фаза дегенерации культуры, характеризующаяся
	уменьшением численности популяции
IV	Г) экспоненциальная фаза роста
V	Д) в этой фазе происходит процесс приспособления посевной культуры к новой
	среде. Численность популяции в это время не увеличивается
VI	Е) численность популяции начинает увеличиваться с возрастающей скоростью,
	данную фазу можно назвать переходной

Ответ: І-Д, ІІ-Е, ІІІ-Г, ІV-А, V-Б, VІ-В

Ответ верный – 20 баллов

Имеются 1-2 ошибки – 10 баллов

Имеются 3-4 ошибки – 5 баллов

Задача № 5. (*30 баллов*) Рассчитайте, сколько можно получить чистого метана при метановом сбраживании навоза на ферме, где содержится 500 голов крупного рогатого скота, если известно, что от одной коровы в год получают 20 т навоза. При метановом сбраживании 1 т навоза получают 45 м³ биогаза, содержащего 65% метана. Ответ выразите в м³/сут, данные округляйте до десятых.

Ответ: 801,4 м³/сут

Решение. Найдем количество навоза от 500 голов: $500 \times 20 = 10000$ т навоза в год от 500 голов или 27,4 т навоза в день. Найдем количество биогаза, получаемого при метановом сбраживании навоза в день: $27,4 \times 45 = 1232,9$ м³/сут. Найдем количество чистого метана из полученного объема биогаза: $1232,9 \times 65/100 = 801,4$ м³/сут.

Верный ответ с решением (последовательность решения может быть другая) – 30 баллов,

Логика ведения расчетов верная, но имеются вычислительные ошибки -10 баллов

Ответ верный, не представлено решение – 2 балла

Задача № 6. (*5 баллов*) Подытожим результаты работы и сведем их в непрерывный цикл переработки отходов скотоводства. Расставьте в правильной последовательности процессы, позволяющие получать из навоза кормовой белок.

- А) метановое сбраживание навоза и получение биогаза
- Б) получение биомассы бактерий
- В) переработка газа метанотрофными бактериями
- Г) сбор навоза на ферме
- Д) очистка биогаза и получение метана

Ответ: ГАДВБ

Ответ верный – 5 баллов

Имеются 1-2 ошибки – 2 балла