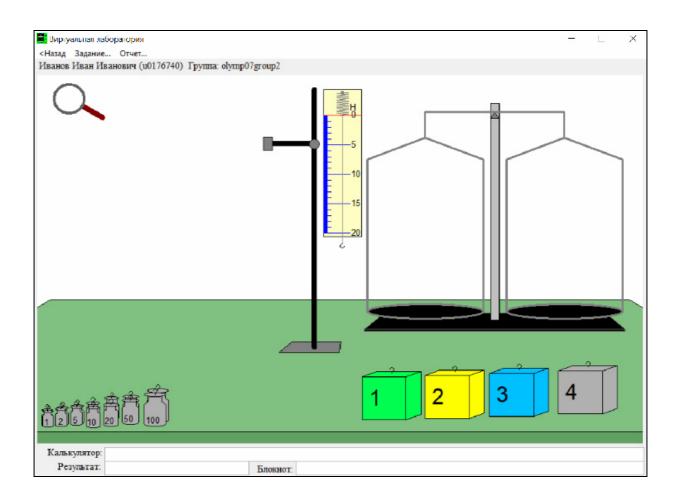
7 класс дистанционный тур2

7 класс тур2 Задание 1. Тест: (16 вопросов, 16 баллов)

7 класс тур2 Задание 2. Олимпиада, задача: Непослушный щенок (20 баллов)


Девочка посадила щенка в сумку и стала спускаться с ним на эскалаторе в метро. Однако, через t_0 =53.8 с, когда они проехали S=32.3 м, щенок выпрыгнул из сумки и побежал вверх со скоростью V_1 =1.15 м/с относительно эскалатора. Мальчик, который в этот момент поднимался по встречному эскалатору вверх и был как раз рядом с девочкой, крикнул ей, что поймает щенка. Он побежал вверх со скоростью V_2 =0.59 м/с относительно эскалатора, дождался щенка наверху, спустился с ним (бежал по движущемуся вниз эскалатору с той же скоростью) и передал хозяйке из рук в руки. Девочка ждала их на платформе t_3 =74.9 с. Определите:

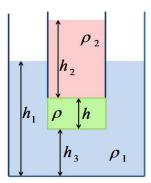
- 1. Скорость эскалатора относительно шахты (U).
- 2. Сколько времени (t_1) мальчик бежал по эскалатору вверх.
- 3. Сколько времени (t₂) мальчик ждал щенка наверху.
- 4. Длину шахты эскалатора (L).

Ответы вводите с точностью не хуже, чем до одного процента. Введите ответ:

U =
$$M/c$$
, (0.6001 ± 0.0072)
 t_1 = c , (27.124 ± 0.326)
 t_2 = c , (31.62 ± 0.38)
L = M , (45.608 ± 0.548)

7 класс тур2 Задание 3. Олимпиада, модель - Весы и динамометр. Найти с максимальной точностью массу кубиков (20 баллов)

Определите с максимальной возможной точностью массу кубиков.

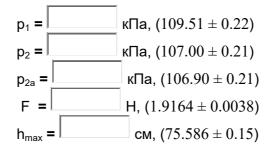

Занесите результат в отчёт и отошлите его на сервер.

Ускорение свободного падения считать равным $g=9.8 \text{ м/c}^2$.

Масса гирь указана в граммах, погрешность разметки шкалы динамометра пренебрежимо мала. Динамометр можно закреплять в лапке штатива - для этого его необходимо поднести **сбоку** к лапке штатива так, чтобы захват лапки немного заходил в область динамометра, и отпустить. К телам, подвешенным на динамометр, можно снизу подцеплять другие тела, в том числе гири - подвести тело к низу подвешенного и отпустить, оно зацепится.

Масса тела №1	Γ	419 ± 0.01
Масса тела №2	Γ	139 ± 0.01
Масса тела №3	Г	483.504 ± 0.48
Масса тела №4	Γ	1524.9 ± 3

7 класс тур2 Задание 4. Олимпиада, задача: Труба в жидкости (25 баллов)

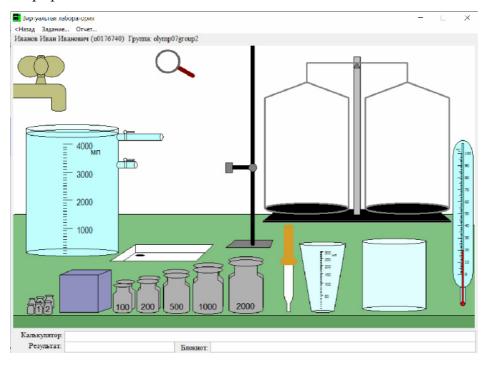


Полую трубу с очень тонкими стенками удерживают в вертикальном положении. Нижний конец трубы погружён в сосуд с жидкостью 1 плотностью ρ_1 =1.2 г/см³. Снизу к торцу трубы плотно прилегает цилиндрическая пластина плотностью ρ =0.52 г/см³. Она опирается о стенки трубы, но никак не закреплена и держится только за счёт давления жидкости 1. Площадь сечения и трубы, и пластины S=10.2 см². Изнутри труба заполнена жидкостью 2 плотностью ρ_2 =0.88

 $\Gamma/\text{см}^3$. Высота жидкости 1 в сосуде h_1 =69.3 см, жидкости 2 в трубе h_2 =53.8 см, толщина пластины h=14.7 см, расстояние от нижней поверхности пластины до дна h_3 =7.5 см. Атмосферное давление p_A =101.36 кПа. Определите:

- 1. Давление p_1 в жидкости 1 у дна сосуда.
- 2. Давление р₂ в жидкости 2 у верхней поверхности пластины.
- 3. Давление р_{2а} в жидкости 1 у верхней поверхности пластины.
- 4. С какой силой F пластина давит на трубу.
- 5. Максимальную высоту h_{max} жидкости 2 в трубе, при которой она ещё не будет выливаться в сосуд.

Ответы вводите с точностью не хуже, чем до десятой процента. Ускорение свободного падения примите равным 9.8 m/c^2 . Введите ответ:


7 класс тур2 Задание 5. Олимпиада, модель: Параметры мерного стакана, кубика и неизвестной жидкости (25 баллов)

В отливном стакане находится вода плотностью 1 г/см³. Если щелкнуть по крану, из него начинает течь неизвестная жидкость. Определите:

- Массу мерного стакана с точностью до десятых.
- Объём воды в отливном стакане с точностью до целых.
- Объём кубика с точностью до целых.
- Плотность кубика с точностью до десятых.
- Плотность неизвестной жидкости, текущей из крана с точностью до сотых.

Занесите результаты в отчёт и отошлите его на сервер.

Краны открываются и закрываются по щелчку мыши. Жидкость из стаканов можно выливать в раковину и переливать в стакан, поставленный в раковину, или в отливной стакан. Кубик можно помещать в цилиндрический стакан, стоящий на столе, после чего наливать в этот стакан жидкости можно только пипеткой. Ускорение свободного падения g=9.8 м/c². Масса подписанных гирь указана в граммах. Считайте, что жидкость из крана, попадая в отливной стакан, практически мгновенно равномерно перемешивается с жидкостью в стакане. Для восстановления начального состояния системы можно выйти из модели и снова в неё зайти. При этом сохраняются все начальные параметры физической системы и не назначаются штрафные баллы.

Масса мерного стакана	Γ	26.5 ± 0.01
Объём воды	cm ³	4245 ± 2
Объём кубика	cm ³	230 ± 1
Плотность кубика	Γ/cm^3	6.6 ± 0.01
Плотность жидкости, текущей из крана	Γ/cm^3	1.38 ± 0.015