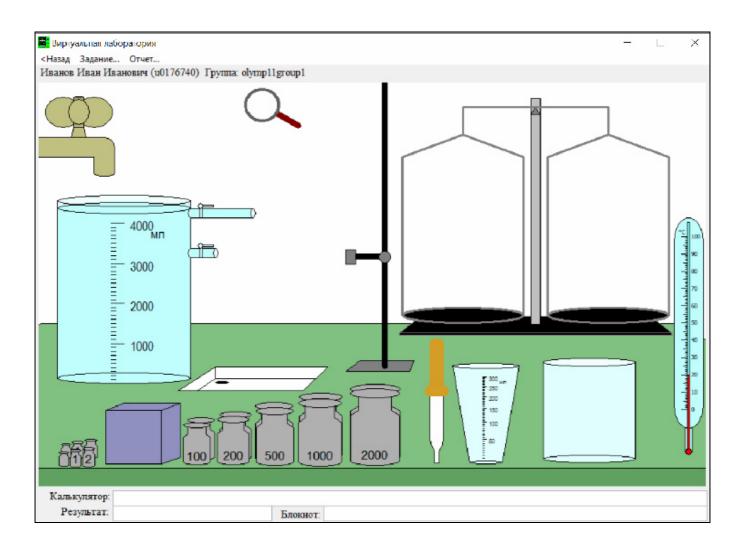

11 класс дистанционный тур1

11 класс тур1 Задание 1. Тест: (16 вопросов, 16 баллов)

11 класс тур1 Задание 2. Олимпиада, задача: Эксперимент со стаканом (20 баллов)


Цилиндрический стакан вверх дном погружают в воду, имеющую такую же температуру как воздух. Масса стакана m=288.2 г, толщина дна стакана d=2 мм, глубина стакана h=12 см, объём материала, из которого он изготовлен, V=53.6 см³, внутренний радиус стакана r=3.1 см. Определите:

- 1. На какую глубину (х) необходимо погрузить дно стакана, чтобы он начал тонуть.
- 2. Каким будет в этот момент давление воздуха в стакане (Р).
- 3. Предельное значение массы стакана (m_1) , при которой он останется на плаву, если его аккуратно опустить в воду вверх дном.
- 4. Какой будет высота воздушного столбика (h_2) в плавающем стакане в этом случае. Давление вводите с точностью не хуже одной десятой процента, остальные ответы с точностью не хуже одного процента. Атмосферное давление P_A =101128 Па. Ускорение свободного падения примите равным 9.8 м/с². Плотность воды ρ $_B$ =1 г/см³. Число π =3.1416.

Введите ответ:

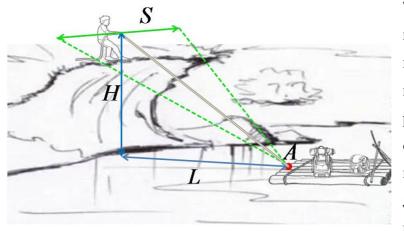
$$x =$$
 cm , (553.466 ± 6.64)
 $P =$ na , (156170 ± 312)
 $m_1 =$ na , (411.5 ± 4.9)
 na , (411.857 ± 0.14)

11 класс тур1 Задание 3. Олимпиада, модель: Мерный стакан, кубик, вода и неизвестная жидкость (40 баллов)

В отливном стакане находится вода плотностью 1 г/см 3 и удельной теплоемкостью 4200 Дж/(кг·К). Если щелкнуть по крану, из него начинает течь неизвестная жидкость. Определите:

- Массу мерного стакана с точностью до десятых.
- Объём воды в отливном стакане с точностью до целых.
- Начальную температуру кубика с точностью до целых.
- Объём кубика с точностью до целых.
- Плотность кубика с точностью до десятых.
- Удельную теплоемкость кубика с точностью до десятков.
- Плотность неизвестной жидкости, текущей из крана с точностью до сотых.

• Удельную теплоемкость неизвестной жидкости - с точностью до десятков.

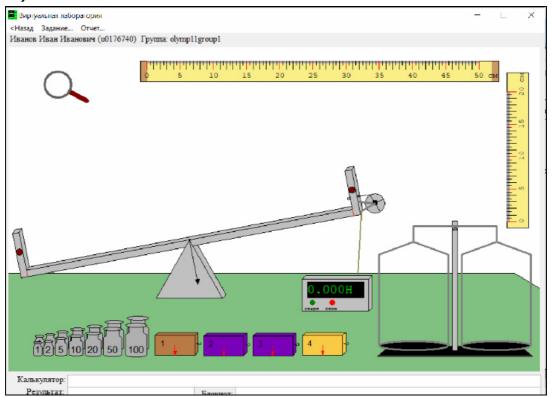

Занесите результаты в отчёт и отошлите его на сервер.

Краны открываются и закрываются по щелчку мыши. Жидкость из стаканов можно выливать в раковину и переливать в стакан, поставленный в раковину, или в отливной стакан. Градусник можно закрепить в лапку штатива, если подвести к лапке сбоку со свободной стороны и отпустить. Градусник нельзя проносить сквозь предметы. Кубик можно помещать в цилиндрический стакан, стоящий на столе, после чего наливать в этот стакан жидкости можно только пипеткой. Ускорение свободного падения g=9.8 м/c². Масса подписанных гирь указана в граммах. Теплоемкостью стаканов можно пренебречь. Считайте, что жидкость из крана, попадая в отливной стакан, практически мгновенно равномерно перемешивается с жидкостью в стакане.

Для восстановления начального состояния системы можно выйти из модели и снова в неё зайти. При этом сохраняются все начальные параметры физической системы и не назначаются штрафные баллы.

Масса мерного стакана	Γ	57.5 ± 0.01
Объём воды	cm ³	4245 ± 2
Температура кубика	°C	77.1 ± 3
Объём кубика	cm ³	235 ± 1
Плотность кубика	Γ/cm^3	7.7 ± 0.01
Удельная теплоемкость кубика	Дж/(кг·К)	500.5 ± 35
Плотность жидкости, текущей из крана	Γ/cm^3	1.4205 ± 0.015
Удельная теплоемкость жидкости, текущей из крана	Дж/(кг·К)	3120 ± 65

11 класс тур1 Задание 4. Олимпиада, задача: Переправа (15 баллов)


Турист переправляет рюкзаки на плоту через небольшое озеро. Стоя на обрыве, он держит верёвку на высоте H=4.6 м над водой и равномерно выбирает её со скоростью U=0.22 м/с. При этом плот в некоторый момент времени движется со скоростью V=0.337 м/с. Определите:

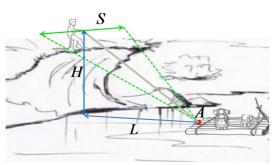
1. На каком расстоянии от берега (L) в этот момент находится ближайший край плота (точка A).

- 2. С какой скоростью (V_1) будет двигаться плот, когда расстояние до берега уменьшится в 2 раза.
- 3. С какой скоростью (V_2) мог бы двигаться плот в начальном положении, если бы, выбирая верёвки со скоростью $U=0.22\,$ м/с, его тянули два человека, стоящие на расстоянии $S=6.8\,$ м друг от друга. На рисунке положение верёвок в этом случае показано зелёным пунктиром. Ответы вводите с точностью не хуже, чем до одного процента. Введите ответ:

L =
$$M$$
, (3.963 ± 0.048)
 $V_1 = M/c$, (0.5557 ± 0.0067)
 $V_2 = M/c$, (0.38607 ± 0.0046)

11 класс тур1 Задание 5. Олимпиада, модель: Наклонный рельс с лебёдкой - коэффициенты трения и действующие силы (35 баллов)

Имеется наклонный рельс с лебёдкой и датчиком натяжения нити, весы, гири, линейки и бруски. Наклон рельса можно менять.


Электромагнит в левой части рельса автоматически включается при установке бруска на рельс и **притягивает брусок с силой F**. При этом кнопка включения/выключения электромагнита начинает светиться. Любой из трех имеющихся брусков можно поставить на рельс. После чего можно присоединить к бруску нить от лебёдки — потянуть за петельку нити, выходящей из отверстия в правой стенке рельса, и присоединить её к крючку бруска. Электронный динамометр присоединён к лебёдке. Лебёдка включается кнопкой "Старт" и выключается кнопкой "Стоп". Колесо лебёдки тянет груз с постоянной скоростью. У брусков

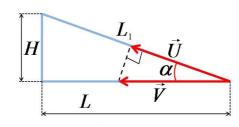
имеется трение о рельс. Если сила, приложенная к кольцу нити, превышает некоторое значение F_{max} , кольцо отцепляется от бруска. Нижние части второго и третьего бруска изготовлены из одного и того же материала по одной и той же технологии и могут считаться идентичными. Значение ускорения свободного падения $g=9.8\,$ м/с 2 . Масса гирь указана в граммах. Найдите с точностью не хуже 0.5%:

- Коэффициент трения скольжения **k1** первого бруска.
- Максимальное возможное значение **F1** силы реакции опоры при движении первого бруска по рельсу.
- Коэффициент трения скольжения k2 второго бруска.
- Массу та третьего бруска.
- Значение силы \mathbf{F}_{max} .
- Значение силы реакции опоры $\mathbf{F_n}$ для **первого** бруска при натяжении нити на 0.01% меньше значения \mathbf{F}_{max} .
- Значение **F** силы притяжения бруска левым электромагнитом.

Коэффициент трения k1		0.0326 ± 0.000815
Сила реакции опоры F1	Н	2.4304 ± 0.061
Коэффициент трения k2		0.0215 ± 0.0005375
Macca m3	Γ	1260.7 ± 38
Сила F _{max}	Н	0.564 ± 0.00564
Сила F _n	Н	2.381 ± 0.024
Сила F электромагнита	\Box	0.2939 ± 0.0176

4. Тур 1. 11 класс. Задача: Переправа (15 баллов)

Турист переправляет рюкзаки на плоту через небольшое озеро. Стоя на обрыве, он держит верёвку на высоте H=3.5 м над водой и равномерно выбирает её со скоростью U=0.44 м/с. При этом плот в некоторый момент времени движется со скоростью V=0.774 м/с.


Определите:

- 1. На каком расстоянии от берега (L) в этот момент находится ближайший край плота (точка A).
- 2. С какой скоростью (V_1) будет двигаться плот, когда расстояние до берега уменьшится в 2 раза.
- 3. С какой скоростью (V_2) мог бы двигаться плот в начальном положении, если бы, выбирая верёвки со скоростью U=0.44 м/с, его тянули два человека, стоящие на расстоянии S= 5.8 м друг от друга. На рисунке положение верёвок в этом случае показано зелёным пунктиром.

Ответы вводите с точностью не хуже, чем до одного процента. Введите ответ:

$$L = \begin{bmatrix} 2.42 & M \\ V_1 & 1.35 & M/c \\ V_2 & 0.94 & M/c \end{bmatrix}$$

Решение.

1. Скорость U, с которой турист выбирает верёвку, связана с изменением длины L_1 в зависимости от изменения длины L. Эта связь задается уравнением

$$(L_1)^2 = L^2 + H^2. (1)$$

Продифференцировав уравнение (1), получаем

$$2L_1 dL_1 = 2L dL. (2)$$

Разделив (2) на 2dt, получаем

$$L_1 \frac{dL_1}{dt} = L \frac{dL}{dt} \,. \tag{3}$$

C учетом того, что $U=\frac{dL_1}{dt}$, $V=\frac{dL}{dt}$ и $\frac{L}{L_1}=\cos(\alpha)$, из (3) следует

$$U = V \cos(\alpha) . (4)$$

Расстояние L от плота до берега

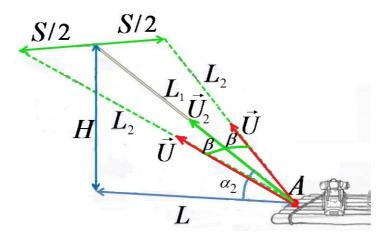
$$L = H \operatorname{ctg}(\alpha). \tag{5}$$

Из (4) и (5) находим

$$L = \frac{HU}{V\sqrt{1 - \frac{U^2}{V^2}}} = 2.42 \,\mathrm{m} \,. \tag{3}$$

2. Если расстояние от плота до берега уменьшится в два раза, косинус угла между вектором скорости плота \vec{V}_1 и скоростью верёвки \vec{U} будет равен

$$\cos(\alpha_1) = \frac{L/2}{L_1} = \frac{L/2}{\sqrt{(L/2)^2 + H^2}},$$
(4)


и, аналогично (1),

$$\cos(\alpha_1) = \frac{U}{V_1} \,. \tag{5}$$

Из (4) и (5) находим, что скорость плота в этом случае окажется равной

$$V_1 == \frac{U}{\cos(\alpha_1)} = \frac{U\sqrt{(L/2)^2 + H^2}}{L/2} = 1.35 \,\text{m/c} \,. \tag{6}$$

3. Если плот, находящийся на расстоянии L от берега будут тащить два туриста, стоящие на расстоянии S друг от друга, ситуация будет описываться следующим рисунком:

Скорости U_2 и U определяются изменением длин L_1 и L_2 , связанных уравнением

$$(L_2)^2 = (L_1)^2 + (S/2)^2$$
. (7)

Продифференцировав уравнение (7), получаем

$$2L_2 dL_2 = 2L_1 dL_1. (8)$$

Разделив (8) на 2dt, получаем

$$L_2 \frac{dL_2}{dt} = L_1 \frac{dL_1}{dt} \,. \tag{9}$$

С учетом того, что в данном случае $U = \frac{dL_2}{dt}$, $U_2 = \frac{dL_1}{dt}$ и $\frac{L_1}{L_2} = \cos(\beta)$, из (9) следует

$$U_2 = \frac{U}{\cos(\beta)} = U \frac{L_2}{L_1}.$$
 (10)

Из (10) следует, что плот будет двигаться со скоростью

$$V_2 == \frac{U_2}{\cos(\alpha_2)} = \frac{U L_2 / L_1}{L / L_1} = \frac{U L_2}{L} = \frac{U \sqrt{L^2 + (S/2)^2 + H^2}}{L} = 0.94 \text{ m/c}.$$
 (11)