Решение варианта 1

- 1. Один из возможных вариантов решения.
 - 1. $N_2 + 3 H_2 \longrightarrow 2 NH_3$ (окислительно-восстановительная реакция) $N_2^0 + 6 \bar{e} \rightarrow 2 N^{-3} | 1$ $H_2^0 - 2 \bar{e} \rightarrow 2 H^+ \mid 3$
 - 2. $2 \text{ NH}_3 + \text{H}_2\text{SO}_4 \longrightarrow (\text{NH}_4)_2\text{SO}_4$
 - 3. $(NH_4)_2SO_4 + 2 KOH \longrightarrow K_2SO_4 + H_2O + 2 NH_3 \uparrow$
 - 4. 4 NH₃ + 3 O₂ $\stackrel{t^{\circ}}{\longrightarrow}$ 2 N₂ + 6 H₂O (окислительно-восстановительная реакция) $2 N^{-3} - 6 \bar{e} \rightarrow N_2{}^0 \mid 2$ $O_2^0 + 4 \bar{e} \rightarrow 2 O^{-2} | 3$
 - $5. \quad N_2 + 3 \; Mg \longrightarrow Mg_3N_2 \; (\text{окислительно-восстановительная реакция})$ $N_2^0 + 6 \bar{e} \rightarrow 2 N^{-3} | 1$ $Mg^0 - 2 \bar{e} \rightarrow Mg^{+2} / 3$
 - 6. $Mg_3N_2 + 6 H_2O \xrightarrow{t^{\circ}} 2 NH_3 \uparrow + 3 Mg(OH)_2$
- **2.** Количество смеси газов составляет $v_{\text{см}} = \frac{V_{\text{смеси}}}{V_{M}} = \frac{1}{22.4} \approx 0{,}045$ моль

Пусть количество атомов аргона в смеси $\nu(Ar) = X$ моль;

Тогда $v(Ne) = 4 \cdot X$ моль;

Количество атомов кислорода составляет

$$\nu(O) = 10 \cdot X$$
 моль $\Rightarrow \nu(O) = \frac{1}{2} \nu(O_2) = 5 \cdot X$ моль;

$$v_{\text{см}} = 5X + 4X + X = 0.045 \text{ моль} \Rightarrow X \approx 0.0045 \text{ моль}$$

$$\nu(O_2) = 5.0,0045 = 0,0225$$
 моль \Rightarrow m(O₂) = 0,0225·32 = 0,72 г $M(O_2) = 32$ г/моль

$$v(Ne) = 4.0.0045 = 0.018$$
 моль \Rightarrow $m(Ne) = 0.018 \cdot 20 = 0.36$ г $M(Ne) = 20$ г/моль

$$\nu({\rm Ar}) = 0{,}0045 \;{\rm моль} \Rightarrow {\rm m}({\rm Ar}) = 0{,}0045{\cdot}40 = 0{,}18\;{\rm \Gamma}$$
 $M(Ar) = 40\;{\it г}/{\it моль}$

$$m_{cM} = m(O_2) + m(N_e) + m(A_r) = 1.26 \Gamma$$

Ответ. $m_{cm} = 1,26 \ \Gamma$

3. Один из возможных вариантов решения.

Смесь солей состоит из SrCO₃ и Ba(HS)₂.

$$SrCO_3 + H_2SO_4$$
 (избыток) $\rightarrow H_2O + CO_2 \uparrow + SrSO_4 \downarrow$

$$Ba(HS)_2 + H_2SO_4$$
 (избыток) $\rightarrow 2 H_2S \uparrow + BaSO_4 \downarrow$

В растворе остаются только ионы H^+ и SO_4^{2-} вещества, которое находится в избытке.

4. Один из возможных вариантов решения.

$$2 \text{ AgNO}_3 \longrightarrow 2 \text{ Ag} + 2 \text{ NO}_2 \uparrow + \text{O}_2 \uparrow$$

$$Ag^+ + 1 \bar{e} \rightarrow Ag^0 \mid 2$$

$$2 O^{-2} - 4\bar{e} \rightarrow O^{0}_{2}$$

5. Уравнение реакции

$$N_2 + 3 H_2 \xrightarrow{Ni, t^{\circ}} 2 NH_3$$

Исходные количества веществ $\nu(H_2) = 0.25$ моль; $\nu(N_2) = 0.25$ моль.

Определим избыток/недостаток веществ в исходной смеси

$$N_2 + 3 H_2 \longrightarrow 2 NH_3$$

1 моль -3 моль

$$X - 0,25 \text{ моль} \Rightarrow X = \frac{1 \cdot 0,25}{3} \approx 0,083 \text{ моль} = \nu(N_2)_{\text{(по уравнению)}} < \nu(N_2) = 0,25 \text{ моль} \Rightarrow N_2 \text{ в избытке.}$$

Определим количество образовавшегося аммиака в результате реакции

$$NH_3 + HCl \rightarrow NH_4Cl$$

Y моль —
$$0.125$$
 моль \Rightarrow Y = 0.125 моль = $v(NH_3)$

Определим количества веществ вступивших в реакцию

$$N_2 + 3 H_2 \longrightarrow 2 NH_3$$

$$\nu'(N_2)$$
 — $\nu'(H_2)$ — $\nu(NH_3) = 0.125$ моль

$$v'(N_2) = 0.125 \cdot 1/2 = 0.0625$$
 моль – количество прореагировавшего N_2

$$v'(H_2) = 0.125 \cdot 3/2 = 0.1875$$
 моль – количество прореагировавшего H_2

Определим состав газовой смеси после пропускания над катализатором

$$v''(N_2) = v(N_2) - v'(N_2) = 0.25 - 0.0625 = 0.1875$$
 моль – количество непрореагировавшего N_2

$$v''(H_2) = v(H_2) - v'(H_2) = 0.25 - 0.1875 = 0.0625$$
 моль – количество непрореагировавшего H_2 $v''(NH_3) = 0.125$ моль

Количество газов в смеси после реакции
$$\nu$$
(смеси) = ν ''(N₂) + ν ''(H₂) + ν ''(NH₃) = 0,375 моль

Объемная доля азота после реакции
$$\phi(N_2) = \frac{V''(N_2)}{V(\text{смеси})} = \frac{v''(N_2)}{v(\text{смеси})} = \frac{0.1875}{0.375} = 0.5$$

Ответ. $\phi(N_2) = 0.5$

6. Количество вещества магния составляет

$$v(Mg) = \frac{m(Mg)}{M(Mg)} = \frac{8,4}{24} = 0,35$$
 моль

$$M(Mg) = 24$$
 г/моль

Масса соляной кислоты в растворе

$$m_{B-Ba}(HCl) = \frac{m_{p-pa}(HCl) \cdot \omega_{p-pa}(HCl)}{100\%} = \frac{195 \cdot 15}{100} = 29,25 \text{ }\Gamma$$

Количество вещества соляной кислоты в растворе

$$\nu(\text{HCl}) = \frac{m_{\text{B-Ba}}(\text{HCl})}{M(\text{HCl})} = \frac{29,25}{36,5} \approx 0,8$$
 моль

$$M(HCl) = 36,5$$
 г/моль

Уравнение окисления магния кислородом воздуха

$$Mg + O_{2(BO3JJVX)} \rightarrow 2 MgO$$

Уравнение реакции растворения оксида магния в соляной кислоте

$$MgO + 2 HCl \rightarrow MgCl_2 + H_2O$$

$$1$$
 моль -2 моль -1 моль

$$0.35 \text{ моль} -0.7 \text{ моль} -0.35 \text{ моль} = v(MgCl_2)$$

Количество вещества HCl необходимое для перевода оксида магния в раствор равно 0,7 моль.

При этом должно образоваться $v(MgCl_2) = 0.35$ моль

В действительности на этот процесс израсходовалось 0,8 моль соляной кислоты, т.е. на 0,1 моль соляной кислоты больше.

Значит при сгорании магния на воздухе был получен не только оксид, но и нитрид магния

$$3Mg + N_2 \rightarrow Mg_3N_2$$
;

$$Mg_3N_2 + 8HCI \rightarrow 3MgCl_2 + 2NH_4C1$$

Следовательно, дополнительные 0,1 моль НС1 пошли на образование хлорида аммония.

Чтобы перевести в раствор 0,35 моль Mg (все равно, через оксид или нитрид), требуется 0,7 моль HC1 и при этом получается 0,35 моль хлорида магния

$$Mg^{2+} + 2 Cl^{-} \rightarrow MgCl_{2}$$
 0,35 моль \rightarrow 0,7 моль \rightarrow 0,35 моль $NH_{3} + H^{+} + Cl^{-} \rightarrow NH_{4}Cl$

$$0.1 \text{ моль} \leftarrow 0.1 \text{ моль} \rightarrow 0.1 \text{ моль}$$

Таким образом, в результате реакции белого вещества с HC1 получено 0,35 моль MgCl₂ и 0,1 моль NH₄Cl.

Ответ. $\nu(MgCl_2) = 0.35$ моль и $\nu(NH_4Cl) = 0.1$ моль.

7. 2 Ca₅(OH)(PO₄)₃ +7 H₂SO₄
$$\rightarrow$$
 3 Ca(H₂PO₄)₂ + 7 CaSO₄ + 2 H₂O $M(Ca(H_2PO_4)_2) = 234$ г/моль

Количество ежедневно выпускаемого двойного суперфосфата составляет

$$v(Ca(H_2PO_4)_2) = m(Ca(H_2PO_4)_2)/M(Ca(H_2PO_4)_2) = 1000.000.000 \ r/234 \ r/моль \approx 4,27 \cdot 10^6 \ моль$$

Количество гипса, уходящего при этом в отходы, составляет

$$\nu(CaSO_4) = 7/3 \cdot \nu(Ca(H_2PO_4)_2) = 7/3 \cdot 4,27 \cdot 10^6 \approx 9,97 \cdot 10^6$$
 моль.

Масса гипса, уходящего отходы

$$M(CaSO_4) = 136$$
 г/моль

$$m(CaSO_4) = v(CaSO_4) \cdot M(CaSO_4) = 9.97 \cdot 10^6 \cdot 136 \approx 1355 \cdot 10^6 \, \text{r} \approx 1355 \, \text{t}.$$

Для вывоза этой массы нужно $n = 1355(t)/63(t/вагон) \approx 21,5 \approx 22$ вагона

Ответ. $n \approx 21,5 \approx 22$ вагона.

Химия, специализация «Химия» критерии оценивания 8, 9 классы

Критерии оценивания задания 1		
Решение содержит следующие элементы		Максимальный балл за элемент решения
	(элемент решения сделан верно и полно)	(баллы за каждый верный элемент решения суммируются)
1	Уравнения всех химических реакций (по 1 баллу за каждую реакцию)	1.6 = 6
2	Схемы электронного баланса (по 1 баллу за каждую схему)	1.3 = 3
3	Условия проведения реакций	1

Критерии оценивания задания 2		
Решение содержит следующие элементы		Максимальный балл за элемент решения
	(элемент решения сделан верно и полно)	(баллы за каждый верный элемент решения суммируются)
1	Количество вещества смеси газов	2
2	Количества вещества каждого газа в смеси	3
3	Массы газов в смеси	3
3	Масса смеси газов	2

	Критерии оценивания задания 3		
	Решение содержит следующие элементы	Максимальный балл за элемент решения	
	(элемент решения сделан верно и полно)	(баллы за каждый верный элемент решения суммируются)	
1	Предложен состав смеси солей	2	
2	Приведены уравнения реакций	4	
3	Приведено объяснение выбора солей	4	

	Критерии оценивания задания 4		
	Решение содержит следующие элементы	Максимальный балл за элемент решения	
	(элемент решения сделан верно и полно)	(баллы за каждый верный элемент решения суммируются)	
1	Приведена схема окислительно-восстановительной реакции	5	
2	Составлена схема электронного баланса реакции	5	
3	Написано уравнение окислительно-восстановительной реакции и указаны окислители и восстановители	5	

Критерии оценивания задания 5	
Решение содержит следующие элементы	Максимальный балл
	за элемент решения

	(элемент решения сделан верно и полно)	(баллы за каждый верный элемент решения суммируются)
1	Уравнения химических реакций	3
2	Расчет избытка/недостатка веществ газовой смеси	3
3	Расчет количества образовавшегося аммиака	3
4	Расчет состава смеси после реакции	3
5	Определение объемной доли азота в полученной смеси	3

Критерии оценивания задания 6		
	Решение содержит следующие элементы	Максимальный балл за элемент решения
	(элемент решения сделан верно и полно)	(баллы за каждый верный элемент решения суммируются)
1	Уравнение окисления магния кислородом воздуха	2
2	Определение количества вещества соляной кислоты	4
3	Расчет избытка соляной кислоты	4
4	Уравнение окисления магния азотом воздуха	2
5	Уравнение реакции взаимодействия избытка соляной кислоты с аммиаком	4
6	Расчет масс и количеств веществ в полученном растворе	4

	Критерии оценивания задания 7		
	Решение содержит следующие элементы	Максимальный балл за элемент решения	
	(элемент решения сделан верно и полно)	(баллы за каждый верный элемент решения суммируются)	
1	Уравнение химической реакции	4	
2	Расчет количества продукта производства	4	
3	Расчет количества отхода производства	4	
4	Расчет массы отхода производства	4	
5	Расчет массы продукта реакции	4	

Решение варианта 2

- 1. Один из возможных вариантов решения.
 - 1. $Ca_3P_2 + 6 H_2O \longrightarrow 2 PH_3 \uparrow + 3 Ca(OH)_2$
 - 2. $PH_3 + 2 O_2 \longrightarrow H_3 PO_4$ (окислительно-восстановительная реакция) $P^{-3} 8 \ \bar{e} \to P^{+5}$ 1 $O_2{}^0 + 4 \ \bar{e} \to 2 O^{-2}$ 2
 - 3. $2 \text{ H}_3\text{PO}_4 + 3 \text{ Ca}(\text{OH})_2 \longrightarrow \text{Ca}_3(\text{PO}_4)_2 + 6 \text{ H}_2\text{O}$
 - 4. $2 \text{ Ca}_3(\text{PO}_4)_2 + \text{SiO}_2 + 10 \text{ C} \xrightarrow{\text{t}^\circ} \text{P}_4 + 10 \text{ CO} + \text{CaSiO}_3$ (окислительно-восстановительная реакция) $4 \text{ P}^{+5} + 20 \bar{\text{e}} \rightarrow \text{P}_4^0 \begin{vmatrix} 1 \\ 10 \end{vmatrix}$
 - 5. P_4+6 Ca \rightarrow 2 Ca₃P₂ (окислительно-восстановительная реакция) $P_4{}^0+12\ \bar{e} \rightarrow 2\ P_{}^{-3}$ $\left|\begin{array}{c}1\\6\end{array}\right|$
 - 6. $Ca_3P_2 + 6 HCl \longrightarrow 2 PH_3 \uparrow + 3 CaCl_2$
- **2.** Количество смеси газов составляет $v_{\text{см}} = \frac{V_{\text{смеси}}}{V_{M}} = \frac{1}{22.4} \approx 0,045$ моль

Пусть количество атомов углерода в смеси v(Kr) = X моль;

Пусть $\nu(O) = 12 \cdot X$ моль $\Rightarrow \nu(O) = \frac{1}{2} \nu(O_2) = 6 \cdot X$ моль;

 $\nu(He) = 2 \cdot X$ моль;

$$v_{cm} = 6X + X + 2X = 0,045$$
 моль $\Rightarrow X = 0,005$ моль

$$\nu(O_2) = 6.0,005 = 0,03$$
 моль \Rightarrow m(O₂) = 0,03·32 = 0,96 г $M(O_2) = 32$ г/моль

$$\nu({\rm Kr}) = 0{,}005 \,{\rm моль} \Rightarrow {\rm m(Kr)} = 0{,}005{\cdot}84 = 0{,}42 \,{\rm \Gamma}$$
 $M(Kr) = 84 \,{\rm г/моль}$

$$v(He) = 2.0,005 = 0.01$$
 моль \Rightarrow m(He) = $0.01.4 = 0.04$ г $M(He) = 4$ г/моль

$$m_{cM} = m(O_2) + m(Kr) + m(He) = 1,42 \Gamma$$

Ответ. $m_{cm} = 1,42 \ \Gamma$

3. Один из возможных вариантов решения.

Раствор смеси солей состоит из CaCl₂ и CaSO₄.

$$CaCl_2 + K_2CO_3$$
 (избыток) $\rightarrow 2 KCl + CaCO_3 \downarrow$

$$CaSO_4 + K_2CO_3$$
 (избыток) $\rightarrow K_2SO_4 + CaCO_3 \downarrow$

В растворе остаются только ионы K^+ и $CO_3{}^{2-}$ вещества, которое находится в избытке, а также ионы $SO_4{}^{2-}$ и Cl^- .

4. Один из возможных вариантов решения.

$$4FeS2 + 11O2 \rightarrow 2Fe2O3 + 8 SO2 \uparrow
Fe+2 - 1 $\bar{e} \rightarrow Fe^{+3}$

$$2 S-1 - 10 \bar{e} \rightarrow 2 S+4
O02 + 4 \bar{e} \rightarrow 2 O-2$$
11$$

5. Уравнение реакции

$$N_2 + 3 H_2 \xrightarrow{Ni, t^{\circ}} 2 NH_3$$

Исходные количества веществ $\nu(H_2) = 0.5$ моль; $\nu(N_2) = 0.5$ моль.

Определим избыток/недостаток веществ в исходной смеси

$$N_2 + 3 H_2 \longrightarrow 2 NH_3$$

1 моль -3 моль

$$X - 0.5 \text{ моль} \Rightarrow X = \frac{1 \cdot 0.5}{3} \approx 0.167 \text{ моль} = \nu(N_2)_{\text{(по уравнению)}} < \nu(N_2) = 0.5 \text{ моль} \Rightarrow N_2 \text{ в избытке.}$$

Определим количество образовавшегося аммиака в результате реакции

$$NH_3 + HCl \rightarrow NH_4Cl$$

Y моль — 0,15 моль
$$\Rightarrow$$
 Y = 0,15 моль = $\nu(NH_3)$

Определим количества веществ вступивших в реакцию

$$N_2 + 3 H_2 \longrightarrow 2 NH_3$$

$$\nu'(N_2)$$
 — $\nu'(H_2)$ — $\nu(NH_3) = 0.15$ моль

$$v'(N_2) = 0.15 \cdot 1/2 = 0.075$$
 моль – количество прореагировавшего N_2

$$v'(H_2) = 0.15 \cdot 3/2 = 0.225$$
 моль – количество прореагировавшего H_2

Определим состав газовой смеси после пропускания над катализатором

$$v''(N_2) = v(N_2) - v'(N_2) = 0.5 - 0.075 = 0.425$$
 моль – количество непрореагировавшего N_2

$$\nu$$
''(H₂) = ν (H₂) – ν '(H₂) = 0,5 – 0,225 = 0,275 моль – количество непрореагировавшего H₂

$$\nu$$
''(NH₃) = 0,15 моль

Количество газов в смеси после реакции $v(\text{смеси}) = v''(N_2) + v''(H_2) + v''(N_3) = 0.85$ моль

Объемная доля азота после реакции
$$\phi(N_2) = \frac{V''(N_2)}{V(\text{смеси})} = \frac{v''(N_2)}{v(\text{смеси})} = \frac{0.425}{0.85} = 0.5$$

Ответ. $\phi(N_2) = 0.5$

6. Количество вещества магния составляет

$$v(Mg) = \frac{m(Mg)}{M(Mg)} = \frac{6}{24} = 0,25$$
 моль

$$M(Mg) = 24$$
 г/моль

Масса соляной кислоты в растворе

$$m_{\text{B-Ba}}(\text{HCl}) = \frac{m_{\text{p-pa}}(HCl) \cdot \omega_{\text{p-pa}}(HCl)}{100\%} = \frac{243,3.9}{100} = 21,9 \ \Gamma$$

Количество вещества соляной кислоты в растворе

$$\nu(\text{HCl}) = \frac{m_{\text{B-Ba}}(\text{HCl})}{M(\text{HCl})} = \frac{21.9}{36.5} \approx 0.6$$
 моль

$$M(HCl) = 36,5$$
 г/моль

Уравнение окисления магния кислородом воздуха

$$Mg + O_{2(BO3JJYX)} \rightarrow 2 MgO$$

Уравнение реакции растворения оксида магния в соляной кислоте

$$MgO + 2 HCl \rightarrow MgCl_2 + H_2O$$

$$1$$
 моль -2 моль -1 моль

$$0.25 \text{ моль} - 0.5 \text{ моль} - 0.25 \text{ моль} = v(MgCl_2)$$

Количество вещества HCl необходимое для перевода оксида магния в раствор равно 0,5 моль.

При этом должно образоваться $v(MgCl_2) = 0.25$ моль

В действительности на этот процесс израсходовалось 0,6 моль соляной кислоты, т.е. на 0,1 моль соляной кислоты больше.

Значит при сгорании магния на воздухе был получен не только оксид, но и нитрид магния

$$3Mg + N_2 \rightarrow Mg_3N_2$$
;

$$Mg_3N_2 + 8HCI \rightarrow 3MgCl_2 + 2NH_4C1$$

Следовательно, дополнительные 0,1 моль НС1 пошли на образование хлорида аммония.

Чтобы перевести в раствор 0,25 моль Mg (все равно, через оксид или нитрид), требуется 0,5 моль HC1 и при этом получается 0,25 моль хлорида магния

$$Mg^{2+} + 2 Cl^{-} \rightarrow MgCl_{2}$$

0,25 моль \rightarrow 0,5 моль \rightarrow 0,25 моль
 $NH_{3} + H^{+} + Cl^{-} \rightarrow NH_{4}Cl$

0,1 моль $\leftarrow 0,1$ моль $\to 0,1$ моль

Таким образом, в результате реакции белого вещества с HC1 получено 0,25 моль $MgCl_2$ и 0,1 моль NH_4Cl .

Ответ. $\nu(MgCl_2) = 0.25$ моль и $\nu(NH_4Cl) = 0.1$ моль.

7. 2 Ca₅(OH)(PO₄)₃ +7 H₂SO₄ \rightarrow 3 Ca(H₂PO₄)₂ + 7 CaSO₄ + 2 H₂O $M(Ca(H_2PO_4)_2) = 234 \text{ г/моль}$

Количество ежедневно выпускаемого двойного суперфосфата составляет

 $v(Ca(H_2PO_4)_2) = m(Ca(H_2PO_4)_2)/M(Ca(H_2PO_4)_2) = 900.000.000 \ r/234 \ r/моль \approx 3,85 \cdot 10^6 \ моль$

Количество гипса, уходящего при этом в отходы, составляет

 $\nu(CaSO_4) = 7/3 \cdot \nu(Ca(H_2PO_4)_2) = 7/3 \cdot 3,85 \cdot 10^6 \approx 8,99 \cdot 10^6 \text{ моль}.$

Масса гипса, уходящего отходы

 $m(CaSO_4) = v(CaSO_4) \cdot M(CaSO_4) = 8,99 \cdot 10^6 \cdot 136 = 1221,7 \cdot 10^6 \Gamma \approx 1.221 \text{ т.} \quad M(CaSO_4) = 136 \text{ г/моль}$

Для вывоза этой массы нужно n = 1.221 (т)/57(т/вагон) $\approx 21.4 \approx 22$ вагона

Ответ. $n \approx 21,4 \approx 22$ вагона

Химия, специализация «Химия» критерии оценивания 8, 9 классы

	Критерии оценивания задания 1		
	Решение содержит следующие элементы	Максимальный балл за элемент решения	
	(элемент решения сделан верно и полно)	(баллы за каждый верный элемент решения суммируются)	
1	Уравнения всех химических реакций (по 1 баллу за каждую реакцию)	1.6 = 6	
2	Схемы электронного баланса (по 1 баллу за каждую схему)	1.3 = 3	
3	Условия проведения реакций	1	

Критерии оценивания задания 2		
Решение содержит следующие элементы (элемент решения сделан верно и полно)		Максимальный балл за элемент решения
		(баллы за каждый верный элемент решения суммируются)
1	Количество вещества смеси газов	2
2	Количества вещества каждого газа в смеси	3
3	Массы газов в смеси	3
3	Масса смеси газов	2

	Критерии оценивания задания 3		
	Решение содержит следующие элементы	Максимальный балл за элемент решения	
	(элемент решения сделан верно и полно)	(баллы за каждый верный элемент решения суммируются)	
1	Предложен состав смеси солей	2	
2	Приведены уравнения реакций	4	
3	Приведено объяснение выбора солей	4	

Критерии оценивания задания 4		
	Решение содержит следующие элементы	Максимальный балл за элемент решения
	(элемент решения сделан верно и полно)	(баллы за каждый верный элемент решения суммируются)
1	Приведена схема окислительно-восстановительной реакции	5
2	Составлена схема электронного баланса реакции	5
3	Написано уравнение окислительно-восстановительной реакции и указаны окислители и восстановители	5

Критерии оценивания задания 5		
Решение содержит следующие элементы	Максимальный балл	
	за элемент решения	
(элемент решения сделан верно и полно)	(баллы за каждый	

		верный элемент решения суммируются)
1	Уравнения химических реакций	3
2	Расчет избытка/недостатка веществ газовой смеси	3
3	Расчет количества образовавшегося аммиака	3
4	Расчет состава смеси после реакции	3
5	Определение объемной доли азота в полученной смеси	3

Критерии оценивания задания 6		
	Решение содержит следующие элементы	Максимальный балл за элемент решения
	(элемент решения сделан верно и полно)	(баллы за каждый верный элемент решения суммируются)
1	Уравнение окисления магния кислородом воздуха	2
2	Определение количества вещества соляной кислоты	4
3	Расчет избытка соляной кислоты	4
4	Уравнение окисления магния азотом воздуха	2
5	Уравнение реакции взаимодействия избытка соляной кислоты с аммиаком	4
6	Расчет масс и количеств веществ в полученном растворе	4

Критерии оценивания задания 7				
	Решение содержит следующие элементы	Максимальный балл за элемент решения		
	(элемент решения сделан верно и полно)	(баллы за каждый верный элемент решения суммируются)		
1	Уравнение химической реакции	4		
2	Расчет количества продукта производства	4		
3	Расчет количества отхода производства	4		
4	Расчет массы отхода производства	4		
5	Расчет массы продукта реакции	4		