Ключи муниципального этапа Всероссийской олимпиады школьников по математике 2017-2018 учебный год 9 класс

Максимально возможное количество баллов за каждое задание: 7 баллов Максимально возможное количество баллов за работу: 35 баллов

Критерии оценивания заданий:

Баллы	Правильность (ошибочность) решения
7	Полное верное решение.
6-7	Верное решение. Имеются небольшие недочеты, в целом не влияющие на
	решение.
5-6	Решение в целом верное. Однако оно содержит ряд ошибок, либо не
	рассмотрение отдельных случаев, но может стать правильным после
	небольших исправлений или дополнений.
4	Верно рассмотрен один из двух (более сложный) существенных случаев,
	или в задаче типа «оценка + пример» верно получена оценка.
2-3	Доказаны вспомогательные утверждения, помогающие в решении задачи.
0-1	Рассмотрены отдельные важные случаи при отсутствии решения (или при
	ошибочном решении).
0	Решение неверное, продвижения отсутствуют.
0	Решение отсутствует.

Задача 1. Ученик начал выполнять экзаменационную работу между 9 и 10 часами, а закончил между 13 и 14 часами. Найти точное время, затраченное абитуриентом на выполнение задания, если известно, что в начале и в конце его работы часовая и минутная стрелки, поменявшись местами, занимали одни и те же положения на циферблате часов.

Ответ: 60/13 часа

Решение.

По начальному и конечному положению часовой стрелки ясно, что ученик начал писать ранее 9.30 ч. и закончил позднее 13.30 часов. Поэтому точное время x, затраченное им на работу, удовлетворяет неравенствам 4 < x < 5. Если после окончания работы учеником минутная стрелка пройдет путь часовой стрелки до исходного положения минутной стрелки на циферблате, то это прибавит x и x ещё x 12 часов времени, поскольку минутная стрелка движется в 12 раз быстрее часовой. В результате с начала экзамена пройдет x 12 часов и это число должно быть целым, так как минутная стрелка совершит полное число оборотов, причем большим, чем x и ближайшим x x. Следовательно, x 12 часов.

Задача 2. Решите уравнение
$$1 + \frac{3}{x+3} \left(1 + \frac{2}{x+2} \left(1 + \frac{1}{x+1} \right) \right) = x$$
.

Ответ: 2

Решение.

$$1 + \frac{1}{x+1} = \frac{x+2}{x+1}$$
, поэтому данное уравнение равносильно уравнению $1 + \frac{3}{x+3} \left(1 + \frac{2}{x+1}\right) = x$ при

условии, что $x \neq -2$. Действуя аналогично, получим, что $1 + \frac{3}{x+3} = x$, где $x \neq -2$ и $x \neq -3$. Корнями этого уравнения являются числа 2 и -2, значит корнем исходного уравнения является только число

Критерии проверки

- Приведен только верный ответ 1 балл.
- Верный ход решения, но не отброшен посторонний корень 3 балла.

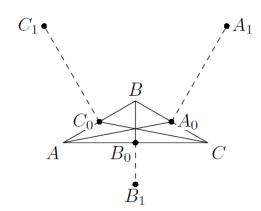
Задача 3. На олимпиаде т>1 школьников решали т>1 задач. Все школьники решили разное количество задач. Все задачи решены разным количеством школьников. Докажите. что один из школьников решил ровно одну задачу.

Решение.

Если нашёлся школьник, не решивший ни одной задачи, то не будем его рассматривать. Затем, если есть задача, не решённая ни одним из школьников, то не будем её рассматривать. По-прежнему все школьники решили разное количество задач, все задачи решены разным количеством школьников. Пусть осталось m' школьников и n' задач. Тогда $m' \ge 1$, $n' \ge 1$. Если каждый из m' школьников решил от 2 до n' задач и все решили разное количество задач, то $m' \le n'$ - 1. Так как каждая из n' задач решена от 1 до m' школьниками, и все задачи решены разным количеством школьников, то $n' \le m'$. Противоречие, значит требуемый школьник найдётся.

Задача 4. Медиану AA_0 треугольника ABC отложили от точки A_0 перпендикулярно стороне BC во внешнюю сторону треугольника. Обозначим второй конец построенного отрезка через A_1 . Аналогично строятся точки B_1 и C_1 . Найдите углы треугольника $A_1B_1C_1$, если углы треугольника ABC равны 30° , 30° и 120° . Ответ. Δ $A_1B_1C_1$ —равносторонний, все углы равны 60° . Решение.

Так как $\triangle ABC$ равнобедренный, то BB_0 — серединный перпендикуляр к основанию AC. Значит, B_1 лежит на этом перпендикуляре и $CB_0 \perp BB_1$. В $\triangle BCB_1$ точка B_0 — основание высоты и медианы на стороне BB_1 , откуда $BC = B_1C$, а так как $\angle B_1BC = \frac{1}{2} \angle ABC = 60^\circ$. Значит, $\triangle B_1BC$ — равносторонний, а A_0 ,



будучи серединой стороны BC является основанием высоты в треугольнике B_1BC . Получается, что точки A_1 и B_1 лежат на серединном перпендикуляре к отрезку BC. Аналогично, C_1 и B_1 лежат на серединном перпендикуляре к отрезку AB. Значит, $\angle C_1B_1A_1 = 180^\circ$ - $\angle ABC = 60^\circ$, $B_1A_1 = B_1A_0 + A_0A_1 = B_1A_0 + A_0A = B_1C_0 + C_0C = B_1C_0 + C_0C_1 = B_1C_1$, т.е. Δ $A_1B_1C_1$ – равнобедренный, с углом при вершине 60° .

Задача 5. У разбойников есть 13 слитков золота. Имеются весы, с помощью которых можно узнать суммарный вес любых двух слитков. Придумайте, как за 8 взвешиваний выяснить суммарный вес всех слитков.

Решение.

Возьмем три первых слитка и взвесим их попарно: C1+C2, C1+C3, C2+C3, затратив три взвешивания. Сложив результаты этих взвешиваний и поделив пополам, найдем суммарный вес этих трех слитков: ((C1+C2)+(C1+C3)+(C2+C3))/2 = C1+C2+C3. За оставшиеся пять взвешиваний найдем вес остальных 10 слитков: объединим их в 5 пар и взвесим каждую пару.

Критерии проверки

- Правильные взвешивания и объяснение, как по их результатам узнать суммарный вес слитков 7 баллов.
- Если используется запрещенное взвешивание (например, в какой-то момент взвешивается только один слиток) 0 баллов.