Решения задач муниципального этапа всероссийской олимпиады школьников по математике 2017 год

9 класс

Задача 1. При каких p один из корней уравнения $x^2 + px + 18 = 0$ вдвое больше друeoeo?

Ответ. 9 или -9.

Решение. Пусть корни уравнения есть a и 2a. По теореме Виета a + 2a = -p, $a \cdot 2a = 18$. Значит, $a = \pm 3$, p = -3a.

Критерии. За потерю второго решения — вычитаются 2 балла. За ответ без обоснования — 0 баллов. Допускается решение без использования теоремы Виета. В случае полного обоснования — оценка 7 баллов.

2. Известно, что число $a=\frac{x}{x^2-x+1}$ рационально. Доказать, что число $b=\frac{x^2}{x^4-x^2+1}$ также рационально.

Решение. При x=0 число b=0 – рационально. Если $x\neq 0$, то и $a\neq 0$, $b\neq 0$. Тогда можно записать $\frac{1}{a}=x-1+\frac{1}{x}$, $\frac{1}{b}=x^2-1+\frac{1}{x^2}$. Значит, $x+\frac{1}{x}=\frac{1}{a}+1$. Возведем это равенство в квадрат, получим $x^2+2+\frac{1}{x^2}=\frac{1}{a^2}+\frac{2}{a}+1$, откуда $\frac{1}{b}=\frac{1}{a^2}+\frac{2}{a}-2$, то есть $b=\frac{a^2}{1+2a-2a^2}$. В силу рациональности a эта дробь также рациональна. Осталось только проверить, что b всегда существует. Знаменатель мог бы обратиться в ноль при $a=\frac{1\pm\sqrt{3}}{2}$, что невозможно в силу рациональности a.

Критерии. Если не исследован случай x = 0, снимается 1 балл. Если не проверено, что b существует — снимается 3 балла. В случае полного обоснования — оценка 7 баллов.

3. Натуральное число n таково, что числа 2n+1 и 3n+1 являются квадратами. Может ли при этом число n быть простым?

Ответ. Нет, не может.

Решение. Пусть $2n + 1 = a^2$ и $3n + 1 = b^2$, тогда

$$n = (3n + 1) - (2n + 1) = b^2 - a^2 = (b - a)(b + a).$$

Если число n — простое, то b-a=1 и b+a=n. Из этих равенств легко выразить числа a и b через n: $a=\frac{n-1}{2}$ и $b=\frac{n+1}{2}$. Подставив выражение для a в исходное равенство $2n+1=a^2$, получим квадратное уравнение $n^2-10n-3=0$, которое не имеет целых корней. Значит, такого простого числа n нет.

Критерии. Доказано только равенство n = (b - a)(b + a) — 2 балла.

4. Угол при вершине B равнобедренного треугольника ABC равен 108°. Докажите, что биссектриса угла A вдвое больше биссектрисы угла B.

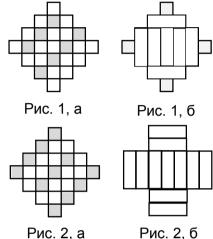
Решение. Пусть AD и BE — биссектрисы равнобедренного треугольника ABC. Через точку E проведём отрезок EF параллельно AD, тогда EF — средняя линия треугольника ACD, и $EF=\frac{1}{2}AD$. Несложным подсчётом углов получаем $\angle FBE=\angle BFE=54^\circ$, и значит, треугольник BEF — равнобедренный. Отсюда $BE=EF=\frac{1}{2}AD$, и поэтому $AD=2\cdot BE$.

Критерии. В случае полного обоснования – оценка 7 баллов.

5. a) Какое наибольшее количество неперекрывающихся полосок 1 × 3 можно уместить на салфетке, изображенной на рисунке? б) Какое наименьшее количество полосок 1 × 3 потребуется, чтобы покрыть салфетку целиком, если полоски могут перекрываться?

Ответ. Решение. а) Раскрасим клетки на салфетке, как показано на рисунке 1,а («диагональная» рас-краска). Каждая полоска 1×3 не может содержать более одной чёрной клетки. Поскольку чёрных кле-ток всего 7, мы не можем уместить на салфетке более 7 полосок (оценка). На рисунке 1,б приведён пример 7 полосок, которые можно разместить на салфетке.

б) Раскрасим клетки на салфетке, как показано на рисунке 2,а. Каждая полоска 1×3 не может со-держать более одной чёрной клетки.



Поскольку чёрных клеток всего 11, для покрытия салфетки по-надобится не менее 11 полосок (оценка). На рисун-ке 2,б приведен пример 11 полосок, которые целиком покрывают салфетку.

Критерии. Ответ без обоснования – по 1 баллу за каждый пункт. Доказано, что число наибольшее или наименьшее – по 3 балла за каждый пункт. Полное решение – 7 баллов.