10 класс

1. На доске записаны 2020 квадратных уравнений:

$$2020x^{2} + bx + 2021 = 0,$$

$$2019x^{2} + bx + 2020 = 0,$$

$$2018x^{2} + bx + 2019 = 0,$$

...,

$$x^{2} + bx + 2 = 0$$

(каждое следующее уравнение получено из предыдущего путем уменьшения старшего коэффициента и свободного члена на единицу). Найдите произведение корней всех уравнений, записанных на доске, если известно, что каждое из них имеет два действительных корня.

Решение. По теореме, обратной теореме Виета, произведение корней первого уравнения $-\frac{2021}{2020}$, произведение корней второго уравнения $-\frac{2020}{2019}$, третьего $-\frac{2019}{2018}$, ..., две тысячи двадцатого $-\frac{2}{1}$. Итак, произведение корней всех уравнений равно $\frac{2021}{2020} \cdot \frac{2020}{2019} \cdot \frac{2019}{2018} \cdot \frac{2018}{2017} \cdot \dots \cdot \frac{3}{2} \cdot \frac{2}{1} = 2021$. **Ответ: 2021.**

Комментарий. Утверждение теоремы, обратной теореме Виета участник олимпиады ошибочно называет теоремой Виета – баллы не снимать.

2. На киберспортивный турнир по «CS:GO» от Ростовской области поехала команда, состоящая из мальчиков и девочек. Среднее число очков, набранных девочками, оказалось равно 22, мальчиками – 47, а среднее число очков во всей команде – 41. Какова доля (в процентах) девочек в этой команде?

Решение. Пусть девочек было x, мальчиков – y, а сумма набранных ими очков S_1 и S_2 соответственно. Из условия вытекают следующие равенства: $\frac{S_1}{x}=22, \ \frac{S_2}{y}=47$ и $\frac{S_1+S_2}{x+y}=41.$ Тогда $S_1=22x$ и $S_2=47y$, откуда $\frac{22x+47y}{x+y}=41.$ Рассмотрим левую часть последнего равенства: $\frac{22x+47y}{x+y}=\frac{22x+22y+25y}{x+y}=22+\frac{25y}{x+y}.$ Итак, $22+\frac{25y}{x+y}=41$ или $\frac{y}{x+y}=\frac{19}{25}.$ Поскольку $\frac{19}{25}=\frac{76}{100},$ то доля мальчиков составляет 76%, а значит доля девочек составляет 24%. **Ответ: 24**%.

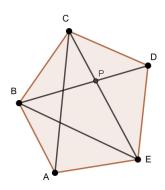
3. Можно ли таблицу размером 2020×2020 заполнить числами -1, 0, 1 так, чтобы суммы во всех строках, во всех столбцах и на главных диагоналях были различными? Главными диагоналями таблицы называются диагонали, проведённые из левого верхнего угла таблицы в правый нижний и из правого верхнего угла таблицы в левый нижний.

Решение. См. решение задачи 11.2. Ответ: нельзя.

4. Каждая диагональ выпуклого пятиугольника ABCDE отсекает от него треугольник единичной площади. Вычислите площадь пятиугольника ABCDE.

Лемма. Пусть в выпуклом четырехугольнике ABCD диагонали AC и BD пересекаются в точке O. Если треугольники ABO и COD — равновеликие, то ABCD — трапеция.

Доказательство. Так как $S_{AOB} = S_{COD}$, то $S_{ABD} = S_{CAD}$, а значит в треугольниках ABD и CAD равны высоты, проведенные из точек B и C соответственно. Это означает, что все точки прямой BC равноудалены от прямой AD, то есть $BC \parallel AD$. **Решение.** Так как $S_{ABE}=S_{ABC}$, то по доказанной выше лемме, имеем EC||AB. Остальные диагонали тоже параллельны соответствующим сторонам. Пусть P — точка пересечения BD и EC. Если $S_{BPC}=x$, то $S_{ABCDE}=S_{ABE}+S_{EPB}+S_{EDC}+S_{BPC}=3+x$ ($S_{EPB}=S_{ABE}=1$, так как ABPE- параллелограмм). Заметим, что $S_{BPC}=S_{DPE}=x$, поскольку BCDE — трапеция. Так как $S_{BPC}:S_{DPC}=BP:DP=S_{EPB}:S_{EPD}$, то x:(1-x)=1:x, а значит, $x=(\sqrt{5}-1)/2$ и $S_{ABCDE}=(\sqrt{5}+5)/2$.



5. В компьютерной игре один человек может играть за одну из трёх фракций: T, Z или P. Есть режим игры по сети, в котором 8 игроков разбиваются на две команды по 4 игрока в каждой. Сколько всего может быть матчей, различающихся наборами фракций? Матчи считаются различными, если в одном матче есть команда, которой нет в другом. Порядок команд и порядок перечисления фракций в команде не важен. Например, матчи (PZPT;TTZP) и (PZTT;TZPP) считаются одинаковыми, а матчи (PZPZ;TZPZ) и (PZPT;ZZPZ) – различными.

Решение. Сначала посчитаем, сколькими способами можно сформировать одну команду из указанных фракций. Пронумеруем фракции. Количество вариантов равно числу решений уравнения $x_1+x_2+x_3=4, x_i\geqslant 0$, где x_i - количество игроков фракции i. Количество решений можно найти по формуле для сочетаний с повторениями: $C_{4+3-1}^{3-1}=15$ или же непосредственно перебрав варианты. Все варианты матчей разобьём на два множества по признаку совпадения команд. Если команды одинаковые, то получим 15 матчей, а если разные, то $C_{15}^2=105$. Таким образом, получаем ответ: 15+105=120 матчей. **Ответ: 120.**