11 класс

11.1. Докажите, что для любого многочлена f(x) с целыми коэффициентами и целых a и b число $f(a-\sqrt{b})+f(a+\sqrt{b})$ является целым.

Решение. Числа $a-\sqrt{b}$ и $a+\sqrt{b}$ являются корнями многочлена $g(x)=x^2-2ax+(a^2-b)$ с целыми коэффициентами.

Запишем
$$f(x) = g(x) \cdot q(x) + cx + d$$
, где c и d –целые числа, тогда $f(a - \sqrt{b}) = c(a - \sqrt{b}) + d$, $f(a + \sqrt{b}) = c(a + \sqrt{b}) + d$.

Таким образом, $f(a - \sqrt{b}) + f(a + \sqrt{b}) = c \cdot 2a + 2d$ – целое число.

11.2. Докажите, что для целых a, b, c, d произведение A = (b-a)(c-a)(d-a)(b-c)(d-c)(d-b) кратно 12.

Решение. Разобьём множество целых чисел на четыре класса $\{4t\}$, $\{4t+1\}$, $\{4t+2\}$, $\{4t+3\}$.

Если среди чисел a, b, c, d есть два таких, которые принадлежат одному и тому же классу, то их разность, а значит, и число A, делится на 4.

Если же никакие два из чисел a, b, c, d не принадлежат одному и тому же классу, то среди них есть два чётных и два нечётных. Разность как двух чётных, так и двух нечётных делится на 2, а поэтому число A делится на 4.

Среди любых четырёх целых чисел a, b, c, d всегда найдутся два таких, которые при делении на 3 дают одинаковые остатки. Их разность, а значит и число A, делится на 3.

Комментарий. Доказательство того, что произведение делится на 2-1 балл, на 4 (или 3)-3 балла.

11.3. Решите уравнение $\sqrt{2x-1} + \sqrt[3]{x} = \sqrt[4]{17-x}$.

Ответ: 1.

Решение. Легко проверить, что x = 1 является корнем уравнения.

Так как левая часть уравнения – возрастающая функция (как сумма двух возрастающих функций), а правая – убывающая, то других корней нет.

Комментарий. Правильный ответ без доказательства его единственности – 2 балла.

11.4. Развертка боковой поверхности прямого кругового конуса есть круг радиуса R, из которого удален сектор, соответствующий центральному углу $(2-\sqrt{3})\pi$. Найдите максимальное значение площади плоского сечения конуса, проходящего через его вершину

OTBET: $\frac{1}{2}R^2$

Решение. Дуга окружности развертки равна $2\pi-\left(2-\sqrt{3}\right)\pi=\pi\sqrt{3}$. Из соотношения $2\pi r=2\pi R\cdot\frac{\pi\sqrt{3}}{2\pi}$, где r – радиус основания, получим $r=\frac{R\sqrt{3}}{2}$. Если α – угол при вершине осевого сечения, то $\sin\frac{\alpha}{2}=\frac{r}{l}$, где l – длина образующей конуса. В нашем случае l=R, откуда $\sin\frac{\alpha}{2}=\frac{\sqrt{3}}{2}$, $\frac{\alpha}{2}=60^{\circ}$, $\alpha=120^{\circ}$.

Площадь сечения, проходящего через вершину конуса равна $S=\frac{1}{2}R^2\sin\phi$, где ϕ – угол между образующими сечение. Максимальную площадь будет иметь сечение, для которого $\phi=90^0$ (этого не будет осевое сечение, для него $\phi=\alpha=120^0$). Такое сечение всегда существует, так как угол меняется от 120^0 до 0^0 .

Таким образом, площадь максимального сечения будет равна

$$S_{max} = \frac{1}{2}R^2$$

11.5. Варя и Мирон играют в следующую игру. На столе лежит куча из *п* камней. Игроки делают ходы поочерёдно, а начинает Варя. Делая ход, играющий делит любую кучку, в которой больше одного камня, на несколько равных кучек. Побеждает тот игрок, у которого нет возможности сделать ход (перед его ходом в каждой кучке ровно по одному камню). При каких

значениях n победит Варя, а при каких Мирон, если оба игрока будут играть наилучшим образом?

Ответ: при простом n или $n=2^k$ выигрывает Мирон. При остальных значениях n- Варя.

Решение. Будем называть кучу, в которой один камень «единичной», а в которой простое число камней — «простой». Простую кучу из p камней можно разделть только на p единичных куч.

Если n – простое, то у Вари единственный ход – разделить имеющуюся кучу на n единичных, после чего она сразу проигрывает.

Если n — составное нечётное, то выигрывает Варя, разделив начальную кучу на нечётное количество простых куч.

Если $n=2^k$, то выигрывает Мирон независимо от того, какие ходы будут делать игроки. Так как у числа n нет нечётного делителя, то каждый игрок на своём ходу будет разделять одну кучку на чётное количество кучек, и количество кучек будет менять чётность. Перед ходом Вари всегда будет нечётное число кучек, а перед ходом Мирона — чётное. Так как в конце перед победителем окажется чётное число $n=2^k$ единичных кучек, то победитель — Мирон.

Если $n=2^k\cdot m$, где m — нечётное, то Варя может разделить начальную кучу на m кучек по 2^k камней в каждой. Теперь, как и в случае $n=2^k$, количество кучек будет менять свою чётность на каждом ходу. Только теперь Мирон оказался перед нечётным числом кучек, а значит выиграет Варя.

Комментарий. Решение для простого n-0 баллов, для составного нечётного -2 балла, для $n=2^k-3$ балла.