Муниципальный этап Всероссийской олимпиады школьников по математике в 2021-2022 учебном году

Ответы и решения

Общие положения

- 1) Максимальная оценка за каждую задачу 7 баллов.
- 2) 7 баллов ставится за безукоризненное решение задач; 6 баллов означает, что в решении допущена мелкая погрешность, например, не разобран частный случай, не влияющий на решение. 4 или 5 баллов означают, что все идеи, необходимые для решения найдены, задачу в целом надо считать решённой, однако приведённое решение имеет существенные недостатки, например, в доказательстве ключевого факта имеются пробелы, устранимые не совсем очевидным образом. 2-3 балла ставится, если в решении задачи имеется серъёзное продвижение, однако для решения необходимы дополнительные идеи, не указанные в решении. 1 балл означает, что в решении имеется только очень мелкое продвижение, как то: замечен, но не доказан ключевой факт, разобран нетривиальный частный случай или приведён (но не обоснован) верный ответ, который не вполне тривиален. Если приведённые в решении факты, идеи, выкладки к решению явным образом не ведут, то задача оценивается в 0 баллов, также как и в случае, когда решение задачи отсутствует.
- 3) В случае наличия в одной работе нескольких решений оценивается ровно одно решение, то, которое приносит больше баллов. За другие решения баллы не снимаются и не начисляются.
- 4) Оценка за задачу не может быть снижена за неаккуратный почерк, ошибки в русском языке, или явные описки в выкладках. Также недопустимо снижение баллов за не чёткий чертёж в геометрической задаче или даже за отсутствие такового. Нельзя требовать с участника олимпиады, чтобы он переписывал условие задачи, в том числе не обязательна краткая запись условия геометрических задач.
- 5) Школьник имеет право сам выбрать способ решения той или иной задачи; не допускается снижать оценку за то, что выбранный школьником способ решения не самый лучший или отличается от предложенных нами способов.
- 6) Факты и теоремы школьной программы (в том числе и те, которые приведены только в задачах школьных учебников) следует принимать без доказательств. Школьник имеет право без доказательства использовать любые такие факты, даже если они проходятся в более старших классах. Допускается (также без доказательств) использование математических фактов, изучающихся на факультативах. В частности, без ограничения можно применять формулы аналитической геометрии, математического анализа, принцип математической индукции, теоремы теории графов и т.п.
- 7) Критерии оценки, приведённые в прилагаемых решениях (таблица в конце решения каждой задачи) являются обязательными и не могут быть изменены. Однако это не означает, что выставляемые за задачу баллы обязательно должны совпасть с приведёнными в таблице: в случае, когда жюри вырабатывает дополнительные критерии (см. следующий пункт) жюри может выставить балл, которого в таблице нет (например, в таблице предусмотрены только 0 и 7 баллов, а

жюри выставляет 5 баллов). Таблицы критериев составлены таким образом, что перечисляют отдельные случаи; накопление баллов за разные пункты не предусмотрено. Финальная оценка является целым числом от 0 до 7.

8) В случае, если решение школьника принципиально отличается от решений, предложенных программным комитетом, и не может быть подведено под предлагаемые критерии, проверяющие вырабатывают критерии самостоятельно в соответствии с пунктом 2.

Муниципальный этап Всероссийской олимпиады школьников по математике в 2021-2022 учебном году

9 класс

Время выполнения заданий — 4 часа

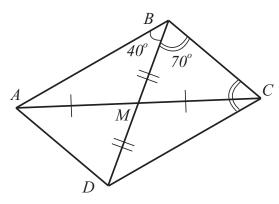
9.1. Фёдор задумал натуральное число, нацело делящееся на 300, и выписал все его натуральные делители, кроме самого числа. Докажите, что сумма нечётных чисел, выписанных Фёдором, меньше суммы чётных.

Решение: Заметим, что для каждого выписанного нечётного делителя A на доску выписан чётный делитель 2A. (Число 2A не равно задуманному числу, так как задуманное число кратно 4, а число 2A — нет.) Значит, сумма чётных выписанных делителей по крайней мере в 2 раза больше суммы нечётных (на самом деле больше, чем в 2, поскольку в предыдущем доказательстве мы не учитывали делители, кратные 4, например, само число 4).

Рекомендации по проверке:

есть в работе	баллы
Верное доказательство	7 баллов
Утверждение задачи доказано на частных случаях чисел	0 баллов
Неверное решение или его отсутствие	0 баллов

9.2. В треугольнике ABC провели медиану BM. Оказалось, что $\angle ABM = 40^\circ$, $\angle MBC = 70^\circ$. Найдите отношение AB:BM. Ответ обоснуйте.



К решению задачи 9.2

Решение: Продолжим медиану BM за точку M и отложим на продолжении отрезок MD=BM см. рисунок. В четырёхугольнике ABCD диагонали точкой пересечения делятся пополам, поэтому этот четырёхугольник является параллелограммом. Тогда $\angle ABC + \angle BCD = 180^\circ$, откуда $\angle BCD = 70^\circ = \angle MBC = \angle DBC$. Это значит, что треугольник BCD равнобедренный, как и равный ему треугольник BAD. Тогда

$$AB : BM = AB : \frac{BD}{2} = AB : \frac{AB}{2} = 2.$$

Ответ: AB : BM = 2.

Рекомендации по проверке:

есть в работе	баллы
Верный и обоснованный ответ	7 баллов
Приведён пример треугольника, удовлетворяющего	0 баллов
условиям задачи	
Неверное решение или его отсутствие	0 баллов

9.3. Числа х и у удовлетворяют равенству:

$$\sqrt{xy} + \sqrt{(1-x)(1-y)} = \sqrt{7x(1-y)} + \frac{\sqrt{y(1-x)}}{\sqrt{7}}.$$

Найдите наибольшее значение выражения x + 7y. Ответ обоснуйте.

Решение:

Способ 1. Проведём равносильные преобразования:

$$\sqrt{xy} + \sqrt{(1-x)(1-y)} = \sqrt{7x(1-y)} + \frac{\sqrt{y(1-x)}}{\sqrt{7}},$$

$$\sqrt{7} \left(\sqrt{xy} - \sqrt{7x(1-y)}\right) + \left(\sqrt{7(1-x)(1-y)} - \sqrt{y(1-x)}\right) = 0,$$

$$\sqrt{7} \left(\sqrt{x}(\sqrt{y} - \sqrt{7(1-y)}) + \frac{\sqrt{1-x}}{\sqrt{7}}(\sqrt{7(1-y)} - \sqrt{y})\right) = 0,$$

$$\sqrt{7} \left(\sqrt{y} - \sqrt{7(1-y)}\right) \left(\sqrt{x} - \frac{\sqrt{1-x}}{\sqrt{7}}\right) = 0,$$

$$\begin{bmatrix} \left\{ \sqrt{y} - \sqrt{7(1-y)} \right\} = 0, \\ 0 \leqslant x \leqslant 1, \\ \sqrt{x} - \frac{\sqrt{1-x}}{\sqrt{7}} = 0, \\ 0 \leqslant y \leqslant 1, \end{bmatrix}$$

$$\begin{bmatrix} \left\{ y = 7/8, \\ 0 \leqslant x \leqslant 1, \\ x = 1/8, \\ 0 \leqslant y \leqslant 1. \right\} \end{bmatrix}$$

Тогда наибольшее значение выражения x + 7y равно $\frac{57}{8}$.

<u>Способ 2.</u> Числа x и y одного знака (иначе не существует \sqrt{xy}). Они не могут быть оба отрицательными (иначе не существуют корни, стоящие в правой части

равенства. Если x>0, то $y\leqslant 1$ (иначе не существует $\sqrt{7x(1-y)}$) и аналогично из неравенства y>0 следует, что $x\leqslant 1$. Значит, $0\leqslant x\leqslant 1$ и $0\leqslant y\leqslant 1$. При этих условиях возведём обе части уравнения в квадрат (переход равносильный, так как обе части уравнения неотрицательны):

$$xy + 2\sqrt{xy(1-x)(1-y)} + (1-x)(1-y) =$$

$$= 7x(1-y) + 2\sqrt{xy(1-x)(1-y)} + \frac{y(1-x)}{7},$$

$$7xy + 7(1-x)(1-y) = 49x(1-y) + y(1-x),$$

$$64xy - 56x = 8y - 7,$$

$$8x(8y - 7) = 8y - 7,$$

откуда либо $y=\frac{7}{8}$ и $0\leqslant x\leqslant 1$, либо $x=\frac{1}{8}$ и $0\leqslant y\leqslant 1$. В первом случае наибольшее значение выражения x+7y достигается при $y=\frac{7}{8},\ x=1$ и равно $\frac{57}{8}$, во втором — при $x=\frac{1}{8},\ y=1$ и тоже равно $\frac{57}{8}$.

Ответ: $\frac{57}{8}$.

Рекомендации по проверке:

есть в работе	баллы
Верный и обоснованный ответ с указанием чисел $x, y,$ при	7 баллов
которых он достигается	
Верный и обоснованный ответ без указания чисел $x, y,$ при	6 баллов
которых он достигается	
При верном ходе решения имеется арифметическая	6 баллов
ошибка, возможно, приведшая к неверному ответу	
Исходное уравнение верно сведено к уравнению вида	3 балла
$f(x,y) \cdot g(x,y) = 0$	
Верный ответ без обоснования	0 баллов

9.4. От фирмы «Рога и копыта» после ее банкротства осталось 17 рогов, 2 копыта и одна гиря. Все это богатство поделили между собой равными по весу частями Паниковский и Балаганов, причем гиря целиком досталась Балаганову. Рога и копыта на части тоже не пилили. Каждый рог тяжелее каждого копыта и легче гири на одну и ту же величину. Сколько рогов и копыт у Паниковского? Приведите все возможеные варианты и докажите, что других нет.

Решение: Пусть одно копыто весит k, а один рог $k + \delta$ (все веса в одних и тех же единицах измерения, например, в пудах). Тогда по условию гиря весит $k + 2\delta$, и общий вес разделённого имущества составляет $20k + 19\delta$. Каждому досталось $10k + 9,5\delta$. Балаганов взял гирю, а рогами и копытами набрал $9k + 7,5\delta$. Этот вес меньше, чем вес 9 рогов, но больше, чем вес 7 рогов и 2 копыт. Значит, Балаганов

взял рогов меньше 9, но больше 7, то есть 8. 8 рогов весят $8k + 8\delta$, и на копыта Балаганову остаётся $k - 0.5\delta$, что меньше веса одного копыта. Значит, все копыта и все остальные рога у Паниковского. Попутно мы установили, что $k - 0.5\delta = 0$, то есть рог тяжелее копыта в 3 раза, и, соответственно, гиря тяжелее копыта в 5 раза.

Ответ: 9 рогов и 2 копыта.

Рекомендации по проверке:

есть в работе	баллы
Верный и обоснованный ответ с выведенным	7 баллов
соотношением весов рога, копыта и гири	
Доказано, что все копыта достались Паниковскому	2 балла
Доказано, что у Балаганова могло быть только 9 рогов	2 балла
Задача решена для конкретно подобранных весов рогов,	0 баллов
копыт и гири	
Верный ответ без обоснования	0 баллов

9.5. На экзамене каждому из трёх студентов был предложен один и тот же тест из 40 вопросов. Назовем вопрос неподъёмным, если на него все ответили неверно; трудным, если только один студент ответил верно, лёгким, если ответили верно ровно два студента, и тривиальным, если верно ответили все трое. Известно, что лёгких вопросов вдвое больше, чем неподъёмных. Каково наибольшее число неподъёмных вопросов может содержать тест, если общее число верных ответов равно 64? Ответ обоснуйте.

Решение: Пусть x_3 , x_2 , x_1 и x_0 — количества тривиальных, лёгких, трудных и неподъёмных вопросов соответственно. Тогда условие задачи можно записать в виде системы:

$$\begin{cases} x_3 + x_2 + x_1 + x_0 = 40, \\ 3x_3 + 2x_2 + x_1 = 64, \\ x_2 = 2x_0. \end{cases}$$

Нас интересуют решения этой системы в целых неотрицательных числах. Выразим все переменные через x_0 . Вычитая из второго уравнения системы первое, получаем равенство $2x_3 + x_2 - x_0 = 24$. С учётом третьего уравнения системы получаем $x_3 = 12 - 0.5x_0$. Тогда из первого уравнения системы имеем:

$$x_1 = 40 - x_3 - x_2 - x_0 = 40 - 12 + 0.5x_0 - 2x_0 - x_0 = 28 - 2.5x_0.$$

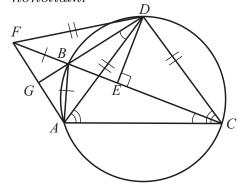
Чтобы последнее выражение было целым, необходимо и достаточно, чтобы число x_0 было чётным, а чтобы оно было неотрицательным — чтобы выполнялось неравенство $x_0 \leqslant \frac{28}{2,5} = 11,2$. Наибольшее число, удовлетворяющее обоим условиям — это число 10. Проверкой убеждаемся, что при $x_0 = 10$ получается допустимое решение системы: $x_0 = 10, x_1 = 3, x_2 = 20, x_3 = 7$.

Ответ: максимально может быть 10 неподъёмных вопросов.

Рекомендации по проверке:

есть в работе	баллы
Верный и обоснованный ответ с приведённым примером	7 баллов
количеств задач всех сложностей	
Верный и обоснованный ответ без примера количеств	6 баллов
задач всех сложностей	
Выписана система уравнений, верно описывающая условия	1 балл
задачи	
Верный ответ без обоснования с приведённым примером	1 балл
количеств задач всех сложностей	
Верный ответ без обоснования	0 баллов

9.6. Задача Архимеда. Пусть D — середина дуги AC, B — некоторая точка этой дуги, отличная от D. Докажите, что точка E — основание перпендикуляра, опущенного из точки D на ломаную ABC, делит длину этой ломаной пополам.



К решению задачи 9.6, способ 1

Решение:

Способ 1. Без ограничения общности считаем, что точка B лежит на той дуге AD, которая не содержит точки C. Тогда точка E лежит на хорде CB. Отметим на продолжении прямой CB за точку B такую точку F, что AB = BF — см. рисунок. Тогда длина ломаной ABC равна длине отрезка CF, и наша цель — доказать, что точка E является серединой этого отрезка. Для этого достаточно показать,

что FD = DC и сослаться на свойство равнобедренного треугольника FCD. Заметим, что DC = DA, так как точка D — середина дуги AB.

Обозначим углы: $\angle DAC = \alpha$ и $\angle ACB = \beta$. Кроме того, продолжим отрезок DB за точку B до его пересечения с отрезком AF в некоторой точке G. Выразим через α и β нужные нам углы:

$$\angle DBA = 180^{\circ} - \angle DCA = 180^{\circ} - \alpha$$
 (так как четырёхугольник $ABDC$ вписанный);
$$\angle ABG = 180^{\circ} - \angle ABD = \alpha;$$

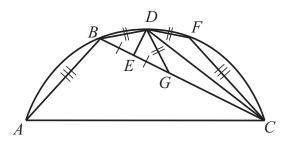
$$\angle BAD = \angle BCD = \alpha - \beta \text{ (свойство вписанных углов);}$$

$$\angle BAC = \angle BAD + \angle DAC = 2\alpha - \beta;$$

$$\angle ABF = \angle BAC + \angle BCA = \text{ (как внешний угол треугольника } ABC\text{)} = 2\alpha;$$

$$\angle GBF = \angle ABF - \angle ABG = \alpha = \angle GBA.$$

Мы получили, что отрезок BG является биссектрисой равнобедренного треугольника ABF. Значит, AG = GF и $AF \perp GB$. Но тогда в треугольнике ADF отрезок DG является одновременно высотой и медианой, что означает равнобедренность треугольника ADF и нужное нам равенство FD = DA = DC.



К решению задачи 9.6, способ 2

Способ 2. По-прежнему считаем, что точка B лежит на той дуге AD, которая не содержит точки C (точка E лежит на хорде CB). Так как дуги AD и DC равны, а дуга BD — часть дуги AD, точка D лежит на дуге BC ближе к точке B, чем к точке C. Тогда и точка E лежит на отрезке BC ближе к точке C.

Отметим на луче EC точку G так, что BE=EG, а на дуге DC точку F так, чтобы дуги DB и DF были равны — точки G и F попадут соответственно на отрезок EC и на дугу DC — см. рисунок. Тогда по свойству вписанных углов справедливо равенство

$$\angle FDC + \angle DCB = \angle DBC = \angle DGB$$
.

С другой стороны, по свойству внешнего угла $\angle DGB$ треугольника BDG имеем $\angle DGB = \angle GDC + \angle DCB$. Сравнивая два полученных равенства, получим, что $\angle FDC = \angle GDC$. Но в таком случае из равенства DF = DG следует равенство FC = GC и, поскольку D — середина дуги AC, то AB = FC = GC, то есть точка E — середина ломаной CBA.

Рекомендации по проверке:

есть в работе	баллы
Верное доказательство	7 баллов
Неверное решение или его отсутствие	0 баллов