Задача 1. Есть пять батареек, из которых три заряжены, а две разряжены.

Фотоаппарат работает от двух заряженных батареек. Можно вставить в него

РЕШЕНИЯ ЗАДАЧ 10 КЛАССА

любые две батарейки и проверить, работает ли он. Как за четыре таких попытки гарантированно включить фотоаппарат?

Решение. Пронумеруем батарейки: 1, 2, 3, 4, 5. Первым испытанием вставим в фотоаппарат батарейки 1 и 2. Если они включат фотоаппарат — всё в порядке. Если нет, то среди батареек 1 и 2 хотя бы одна разряжена, значит, среди трёх остальных — не более одной разряженной. Тремя следующими испытаниями перепробуем все пары оставшихся батареек: 3, 4; 3, 5; 4, 5 — и обязательно найдем пару заряженных.

- ♦ См. также задачу 2 для 11 класса.
- За ответ без обоснования 0 баллов.

Задача 2. Учитель написал на доске два числа. Петя поделил первое число на второе. Вася сложил оба числа и поделил полученную сумму на удвоенное первое число. Оказалось, что Петя и Вася получили один и тот же результат, не равный 1. Чему равен этот результат?

Ответ. -1/2. **Решение.** Пусть первое число — это a, второе — b. По условию a/b = (a+b)/2a. Умножая обе части этого равенства на 2ab, получаем $2a^2 = ab + b^2 \Rightarrow a^2 - b^2 + a^2 - ab = 0 \Rightarrow (a-b)(2a+b) = 0$. Заметим, что $a \neq b$, так как по условию $a/b \neq 1$. Значит, $a-b \neq 0$, откуда $2a+b=0 \Rightarrow b=-2a \Rightarrow a/b=-1/2$.

- Верно составлено уравнение по условию задачи, дальнейшего продвижения нет 0 баллов. Деление на a–b без обоснования, почему $a \neq b$ pешение оценивается не выше, чем в 4 балла.
- **Задача 3.** Острые углы α_1 , α_2 , α_3 таковы, что $\sin \alpha_1 = \cos \alpha_2$, $\sin \alpha_2 = \cos \alpha_3$, $\sin \alpha_3 = \cos \alpha_1$. Докажите, что все эти углы равны 45° .

Решение. Для острых углов α и β равенство $\cos{(90^{\circ}-\alpha)} = \sin{\alpha} = \cos{\beta}$ в силу монотонности косинуса отрезке от 0° до 90° равносильно равенству $\beta = 90^{\circ}-\alpha$. Поэтому равенства из условия задачи означают, что $\alpha_2 = 90^{\circ}-\alpha_1$, $\alpha_3 = 90^{\circ}-\alpha_2$ и $\alpha_1 = 90^{\circ}-\alpha_3$, откуда $\alpha_1 = 90^{\circ}-\alpha_3 = \alpha_2 = 90^{\circ}-\alpha_1$ \Rightarrow $\alpha_1 = 45^{\circ}$. Подставляя $\alpha_1 = 45^{\circ}$ в равенства $\alpha_2 = 90^{\circ}-\alpha_1$ и $\alpha_1 = 90^{\circ}-\alpha_3$, получаем $\alpha_2 = \alpha_3 = 45^{\circ}$.

- Отсутствие ссылки на монотонность синуса и косинуса на отрезке от 0° до 90° в обоснование равенства $\alpha_2 = 90^{\circ} \alpha_1$ и ему подобных *не штрафуется*.
- **Задача 4.** В треугольнике ABC на стороне BC отмечены точки A_1 и A_2 (A_1 лежит между B и A_2) так, что $\angle BAA_1 = \angle A_1AA_2 = \angle A_2AC$, а на стороне AC точки B_1 и B_2 (B_1 лежит между A и B_2) так, что $\angle ABB_1 = \angle B_1BB_2 = \angle B_2BC$. Оказалось, что как прямые AA_1 и BB_1 , так и прямые AA_2 и BB_2 пересекаются на биссектрисе угла C. Докажите, что треугольник ABC равнобедренный.

Решение. Пусть прямые AA_1 и BB_1 пересекаются в точке O_1 , прямые AA_2 и BB_2 — в точке O_2 , а CD — биссектриса треугольника ABC. O_1 — точка пересечения биссектрис треугольника ABO_2 , поэтому O_2D — биссектриса этого треугольника. Отсюда $\angle B_2O_2C = \angle BO_2D = \angle AO_2D = \angle A_2O_2C$. Кроме того, по условию $\angle B_2CO_2 = \angle A_2CO_2$. Поэтому $\angle BA_2O_2 = \angle A_2CO_2 + \angle A_2O_2C = \angle B_2CO_2 + \angle B_2O_2C = \angle AB_2O_2$. Положим $\angle BAC = 3\alpha$, $\angle ABC = 3\beta$. Тогда $180^\circ - 3\alpha - 2\beta = \angle AB_2O_2 = \angle BA_2O_2 = 180^\circ - 2\alpha - 3\beta$, откуда $\alpha = \beta$, что и требовалось доказать.

• Показано, что O_2D — биссектриса треугольника ABO_2 , дальнейшего содержательного продвижения нет — 2 балла.

Задача 5. Можно ли выбрать в пространстве 100 прямых так, чтобы они пересекались ровно в 2022 точках?

Ответ. Можно. **Решение.** Заметим, что 43.47 = 2021. Поэтому если мы проведем в некоторой плоскости α 43 параллельных прямых одного направления и 47 параллельных прямых другого направления, то уже получим 2021 точку пересечения. Ещё одну прямую проведём так, чтобы она пересекла плоскость α в точке, лежащей на одной из 90 уже проведенных прямых, а остальные 9 прямых проведём параллельно плоскости α на разных расстояниях от неё, что не добавит новых точек пересечения

• За ответ «можно» без обоснования — 0 баллов.

Задача 6. На доске написано пять «уравнений» вида $x^2 + ... x + ... = 0$. Двое по очереди вписывают вместо многоточий натуральные числа от 1 до 10, причём каждое число можно использовать только один раз. Игра заканчивается, когда все числа вписаны. Тот, кто делает первый ход, хочет, чтобы в этот момент на доске было как можно больше уравнений, имеющих по два различных корня, его соперник — чтобы их было как можно меньше. Какого наилучшего результата может добиться первый независимо от игры второго?

Ответ. 3. **Решение.** Чтобы получить три уравнения, имеющих по два различных корня, первому достаточно тремя первыми ходами вписывать на место коэффициента перед *x* в «уравнении», куда ещё не вписано ни одного числа, наибольшее из ещё не вписанных чисел. Такое возможно, потому что если сделано не более двух пар ходов, то коэффициенты могли появиться максимум в четырёх «уравнениях».

Пусть $x^2+px+q=0$ — одно из уравнений, получившихся в конце игры, где коэффициент p вписан первым игроком на одном из трёх первых ходов. Тогда, очевидно, $q \le p-1$, откуда $p^2-4q \ge p^2-4(p-1)=(p-2)^2>0$, потому что даже на третьем ходу первого $p \ge 6$, так как в двух первых парах ходов было использовано только четыре числа. Итак, первый может добиться трёх уравнений с двумя корнями каждое.

Чтобы помешать первому получить больше трёх уравнений с двумя корнями, второму достаточно двумя первыми ходами вписывать на место коэффициента перед x в «уравнении», куда ещё не вписано ни одного числа, наименьшее из ещё не вписанных чисел. Пусть $x^2+px+q=0$ — одно из уравнений, получившихся в конце игры, где коэффициент p вписан вторым игроком на одном из двух первых ходов. Тогда, очевидно, $p \le 4$ и $q \ge p+1$, откуда $p^2-4q \ge p^2-4(p+1)=p(p-4)-4<0$, то есть уравнение не имеет корней.

• Ответ без обоснования — 0 баллов. Если есть стратегия только за одного из игроков, решение оценивается из 4 баллов: по 2 балла за описание стратегии и её обоснование.