Решения заданий муниципального этапа Всероссийской олимпиады школьников Новосибирской области по математике 2023-2024 г.г. Решение каждой задачи олимпиады оценивается из 7 баллов

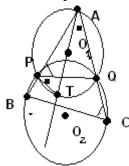
11 класс

11.1. Доказать, что если для трёх ненулевых чисел x, y, z выполняются равенства $x + \frac{1}{y} = y + \frac{1}{z} = z + \frac{1}{x}$, то либо x = y = z, либо $x^2y^2z^2 = 1$.

Доказательство. Преобразуем равенства в условии. $x+\frac{1}{y}=y+\frac{1}{z} \Leftrightarrow xyz+z=y^2z+y$, последнее эквивалентно yz(x-y)=y-z. Аналогично, из второго равенства получаем zx(y-z)=z-x и из равенства $x+\frac{1}{y}=z+\frac{1}{x}$ получаем xy(x-z)=y-x. Перемножим все три равенства $x^2y^2z^2(x-y)(y-z)(x-z)=(y-z)(z-x)(y-x)$. Если хотя бы одна скобка равна нулю, например x=y, то из равенства yz(x-y)=y-z следует и y=z, в этом случае x=y=z. Если ни одна из скобок не равна 0, их можно сократить, получив вторую возможность $x^2y^2z^2=1$.

Критерии проверки. (•) Сделано преобразование $x + \frac{1}{y} = y + \frac{1}{z} \Leftrightarrow yz(x-y) = y-z$: 2 балла (•) Выполнено перемножение трёх равенств: 2 балла. (•) Получен первый случай x = y = z: 1 балл. (•) Получен второй случай $x^2y^2z^2 = 1$: 2 балла.

11.2. Две окружности пересекаются в точках P и Q, при этом центр O_1 первой окружности лежит вне второй, а центр O_2 второй окружности- вне первой. На первой окружности вне второй выбрана произвольная точка A, отличная от P и Q, через неё проведены две прямые AP и AQ, пересекающие второй раз вторую окружность в точках B и C соответственно вне первой. Докажите, что прямые AO_1 и BC перпендикулярны.



Доказательство. Перпендикулярность прямых AO_1 и BC следует из того, что сумма величин углов ACB и CAO_1 равна 90°. Докажем последнее утверждение. Обозначим вторую точку пересечения прямой AO_1 с первой окружностью за T, отметим, что отрезок AT — диаметр первой окружности и опирающийся на него угол APT — прямой. Разобьём его в сумму углов APQ и QPT. Углы QPT и QAT= CAO_1 равны, как вписанные в первую окружность и опирающийся в ней на общую хорду TQ. Четырёхугольник PQCB вписан во вторую окружность, поэтому его угол QCB=ACB равен 180° минус угол QPB, то есть равен смежному с последним углу APQ. Следовательно, сумма величин углов ACB и CAO_1 равна величине прямого угла APT, то есть 90°, что и требовалось доказать.

Критерии проверки. (\bullet) Замечено, что перпендикулярность прямых AO_1 и BC следует из того, что сумма величин углов ACB и CAO_1 равна 90°: 1 балл. (\bullet) Замечено, что AT — диаметр первой окружности и опирающийся на него угол APT — прямой: 1 балл. (\bullet) Показано равенство углов QPT и QAT= CAO_1 : 1 балл. (\bullet) Показано равенство углов QCB=ACB и APQ: 2 балла. (\bullet) Показано, что сумма величин углов ACB и CAO_1 равна величине прямого угла APT: 2 балла.

11.3. В турнире по олимпийской системе участвуют 8 борцов одинаковой силы, среди которых есть Вася и Петя. Их случайным образом разбивают на 4 пары, после чего победителей в каждой паре также случайно разбивают на две пары, победители которых встречаются в финале. В каждой схватке каждый из борцов побеждает другого с вероятностью ровно $\frac{1}{2}$. Какова вероятность того, что Вася и Петя встретятся между собой в ходе турнира?

Ответ. $\frac{1}{4}$.

Решение. Занумеруем борцов так, чтобы в финале встретились победитель среди борцов 1,2,3,4 и победитель среди борцов 5,6,7,8, а в полуфинале — победитель пары 1,2 с победителем пары 3,4, и победитель пары 5,6 с победителем пары 7,8. Всего имеется 8! случаев распределения 8 борцов по этим 8 номерам. Рассмотрим все три случая, когда Вася и Петя таки могли встретиться в турнире.

- 1) Вася и Петя встретились в первой схватке. Это могло произойти, если они были распределены в одну из пар номеров (1,2),(3,4),(5,6),(7,8), что могло произойти $4 \cdot 2 \cdot 6!$ способами каждый из них в одной из 4 пар двумя способами и остальные 6 по 6 оставшимся номерам 6! способами.
- 2) Вася и Петя встретились во второй схватке. Это могло произойти, если они были распределены в разные пары номеров $\{1,2\},\{3,4\}$ из первой четвёрки (1,2,3,4) или в разные пары номеров $\{5,6\},\{7,8\}$ из второй четвёрки (5,6,7,8) и оба победили в своих первых схватках. Это могло произойти $2 \cdot 2 \cdot 2 \cdot 2 \cdot 6! = 16 \cdot 6!$ способами, число которых нужно умножить на вероятность $\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$ выигрыша обоими своих первых схваток, что в итоге даёт $4 \cdot 6!$.
- 3) Вася и Петя встретились в третьей схватке. Это могло произойти, если они были распределены в разные четвёрки $\{1,2,3,4\}$ и $\{5,6,7,8\}$ и оба победили в своих первых двух схватках. Это могло произойти $2 \cdot 4 \cdot 4 \cdot 6! = 32 \cdot 6!$ способами, число которых нужно умножить на вероятность $\frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16}$ выигрыша обоими двух своих первых схваток, что в итоге даёт $2 \cdot 6!$.

Сумму чисел благоприятных исходов во всех трёх случаях делим на общее число возможностей, получаем ответ: $\frac{8 \cdot 6! + 4 \cdot 6! + 2 \cdot 6!}{8!} = \frac{8 + 4 + 2}{7 \cdot 8} = \frac{1}{4}.$

Критерии проверки. (●).Рассмотрение трёх случаев: 1 балл. (●) Верная схема комбинаторного подсчёта количества возможных случаев в каждом из случаев 1), 2), 3): по 1 баллу за каждый (●) Верное умножение на $\frac{1}{4}$ и $\frac{1}{16}$ во втором и третьем случаях: по 1 баллу за каждый. (●). Верное деление суммы чисел благоприятных исходов во всех трёх случаях на общее число возможностей: 1 балл.

11.4. Найти все натуральные N такие, что числа 4N-3 и 9N+1 являются квадратами натуральных чисел.

Ответ. N = 7.

Решение 1. Обозначим $4N-3=x^2$ и $9N+1=y^2$, тогда $4y^2-9x^2=(2y+3x)(2y-3x)=31$. Число 31 разлагается в произведение двух натуральных множителей единственным способом, поэтому 2y+3x=31, 2y-3x=1, откуда x=5, y=8, N=7.

Решение 2. Обозначим $4N-3=x^2$ и $9N+1=y^2$, тогда $9N=y^2-1=(y-1)(y+1)$. Оба числа y-1 и y+1 делиться на 3 одновременно не могут, поэтому ровно одно из них делится на 3 и на 9.

- а) Пусть y-1 делится на 9, тогда y=9t+1, а N=(9t+2)t. Следовательно. $x^2=4N-3=4(9t+2)t-3=36t^2+8t-3>36t^2$. Но следующий за точным квадратом $(6t)^2=36t^2$ точный квадрат $(6t+1)^2=36t^2+12t+1$ уже будет больше $36t^2+8t-3$, поэтому такое невозможно.
- б) Пусть y+1 делится на 9, тогда y=9t-1, а N=(9t-2)t. Следовательно. $x^2=4N-3=4(9t-2)t-3=36t^2-8t-3<36t^2$. Предшествующий точному квадрату $(6t)^2=36t^2$ точный квадрат $(6t-1)^2=36t^2-12t+1$ может равняться $36t^2-8t-3$ при t=1, что даёт решение N=7. А вот квадрат $(6t-2)^2=36t^2-24t+4$ уже меньше $36t^2-8t-3$, поэтому больше решений нет.

Критерии проверки. (\bullet) Угадан правильный ответ N=7 1 балл.

В решении 1 (•) Получено равенство $4y^2 - 9x^2 = 31$: 3 балла. 1 (•) Сделано разложение $4y^2 - 9x^2 = (2y + 3x)(2y - 3x) = 31$: 1 балл. (•) Получена система 2y + 3x = 31, 2y - 3x = 1: 2 балла.

В решении 2 (•) Показано, что (y-1)(y+1) делится на 9: 1 балл. (•) Показано, что одно из чисел y-1 и y+1 на 9: 1 балл. (•) Показано, что $N=(9t\pm 2)t:1$ балл. (•) Правильное рассмотрение каждого из пунктов а) и б): по 2 балла.

11.5. Каждое из натуральных чисел от 1 до n окрасили в красный или синий цвет и подсчитали среднее арифметическое красных чисел и среднее арифметическое синих чисел. После этого одно из красных чисел перекрасили в синий цвет, после чего среднее арифметическое красных чисел и среднее арифметическое синих чисел одновременно увеличились на одно и то же число x. Найти максимальное значение x.

Ответ.
$$\frac{1}{2}$$
.

Решение. Обозначим за α и β средние арифметические красных и синих чисел до перекраски соответственно, за t - перекрашенное число, и за k - количество красных чисел сначала. По условию, $\alpha k - t = (\alpha + x)(k - 1)$, откуда $t = \alpha - x(k - 1)$. Аналогично, $\beta(n-k)+t=(\beta+x)(n-k+1)$, откуда $t=x(n-k+1)+\beta$. Приравниваем $\alpha-x(k-1)=x(n-k+1)+\beta$, получаем $x=\frac{\alpha-\beta}{n}$. При фиксированном k максимальное среднее арифметическое значение любых k чисел из интервала от 1 до n не превосходит среднего арифметического k максимальных чисел n-k+1,...,n-1,n, то есть $\alpha \leq \frac{n-k+1+...+n-1+n}{k} = \frac{2n-k+1}{2}$. Аналогично, при фиксированном k минимальное среднее арифметическое значение любых n-k чисел из интервала от 1 до n не меньше

среднего арифметического n-k минимальных чисел 1,2,...,n-k, то есть $\beta \leq \frac{1+2+...+n-k}{k} = \frac{n-k+1}{2}$. Следовательно, $x = \frac{\alpha-\beta}{n} \leq \frac{1}{n}(\frac{2n-k+1}{2}-\frac{n-k+1}{2}) = \frac{1}{2}$. Пример. Если в красный цвет покрашены числа n-k+1,...,n-1,n, а в синий – числа 1,2,...,n-k, то до перекраски их средние арифметические равнялись $\alpha = \frac{2n-k+1}{2}$ и $\beta = \frac{n-k+1}{2}$ соответственно. После перекраски числа n-k+1 в синий цвет, эти средние станут равны $\alpha' = \frac{2n-(k-1)+1}{2} = \frac{2n-k+2}{2} = \alpha + \frac{1}{2}$ и $\beta' = \frac{n-(k-1)+1}{2} = \frac{n-k+2}{2} = \beta + \frac{1}{2}$, соответственно, оба увеличатся на $\frac{1}{2}$.

Критерии проверки. (•) Приведён правильный ответ и пример, на котором он достигается: 2 балла. (•) Вычисления оценки доведены только до выражения $x = \frac{\alpha - \beta}{n}$: 2 балла. (•) Доказано, что $\frac{\alpha - \beta}{n} \le \frac{1}{2}$: 3 балла. (•) Отсутствует проверка примера: минус 1 балл.