Второй (муниципальный) тур всероссийской олимпиады школьников по математике в 2023-2024 учебном году

11 класс

1. Выяснить, при каких условиях для параметров а,b,c,d параболы

$$y = x^2 + ax + b$$
, $y = x^2 + cx + d$

имеют более одного пересечения.

Решение. Координаты точки пересечения линий должны удовлетворять системе, составленной из уравнений этих линий, и всякому следствию из нее, например, равенству правых частей: $x^2 + ax + b = x^2 + cx + d \Leftrightarrow (a-c)x = (d-b)$ Если $a \neq c$, последнее линейное уравнение (а с ним и система) имеет единственное решение: x = (d-b): (a-c). Чтобы решений было более одного, должно быть a = c, но тогда и b = d (иначе линейное уравнение и система не имеют решений).

Ответ. При a=c,b=d , т.е. параболы, просто, совпадают.

2. Найти количество корней уравнения: $2^{\lg(x^2-2023)} - \lg 2^{x^2-2022} = 0$. Решение. Используя свойство логарифмов, перепишем уравнения в следующем виде $(x^2-2023)^{\lg 2} - \lg 2^{x^2-2022} = 0$. Введем обозначения $z=x^2-2023$, $a=\lg 2$, при этом z>0, $a\in(0,1)$. Тогда $z^a=(z+1)a$.

Пусть $y_1(z)=z^a$, $y_2(z)=(z+1)a$. Так как $y_1(1)=1,y_2(1)=2a$, причем $y_1(1)=1=\lg 10>\lg 4=2\lg 2=2a$ и учитывая монотонность и выпуклость функций $y_1(z),y_2(z)$ для $a\in (0,1)$, получаем, что уравнение $z^a=(z+1)a$ имеет два корня z_1 и z_2 , один из которых, например z_1 меньше единицы, но больше нуля, а другой корень z_2 будет больше единицы. Тогда, вспоминая замену $z=x^2-2023$ и возвращаясь к исходной переменной x,

приходим к выводу, что исходное уравнение будет иметь 4 корня: $\pm \sqrt{z_1 + 2023}$, $\pm \sqrt{z_2 + 2023}$.

Ответ. 4 корня.

3. Доказать, что для любых положительных чисел a, b, c выполняется неравенство

$$\frac{2a}{3(b+c)} + \frac{2b}{3(a+c)} + \frac{2c}{3(a+b)} \ge 1.$$

Решение. Прибавив к обеим частям неравенства число 2, получим

$$\left(\frac{2a}{3(b+c)} + \frac{2}{3}\right) + \left(\frac{2b}{3(a+c)} + \frac{2}{3}\right) + \left(\frac{2c}{3(a+b)} + \frac{2}{3}\right) \ge 3.$$

$$2(a+b+c)\left(\frac{1}{b+c} + \frac{1}{a+c} + \frac{1}{a+b}\right) \ge 9.$$

$$\left((b+c) + (a+c) + (a+b)\right)\left(\frac{1}{b+c} + \frac{1}{a+c} + \frac{1}{a+b}\right) \ge 9.$$

Используя, неравенство о средних

$$\begin{cases} (b+c) + (a+c) + (a+b) \ge 3\sqrt[3]{(b+c)(a+c)(a+b)}, \\ \frac{1}{b+c} + \frac{1}{a+c} + \frac{1}{a+b} \ge 3\sqrt[3]{\frac{1}{b+c} \cdot \frac{1}{a+c} \cdot \frac{1}{a+b}}, \end{cases}$$

получим

$$((b+c) + (a+c) + (a+b)) \left(\frac{1}{b+c} + \frac{1}{a+c} + \frac{1}{a+b}\right)$$

$$\geq 3\sqrt[3]{(b+c)(a+c)(a+b)} \cdot 3\sqrt[3]{\frac{1}{b+c} \cdot \frac{1}{a+c} \cdot \frac{1}{a+b}} = 9.$$

4. В четырёхугольник ABCD можно вписать и вокруг него можно описать окружность. Диагонали этого четырёхугольника взаимно перпендикулярны.

ABCD –квадрат?

Решение. Рассмотрим в окружности диаметр АС и перпендикулярную ему хорду ВD, не проходящую через центр (см. рисунок). В четырёхугольник ABCD можно вписать и вокруг него можно описать

окружность. Диагонали этого четырёхугольника взаимно перпендикулярны. ABCD –квадрат?

Решение. Рассмотрим в окружности диаметр AC и перпендикулярную ему хорду BD, не проходящую через центр (см. рисунок).

Покажем, что четырехугольник ABCD удовлетворяет условию задачи. Для этого достаточно доказать, что в него можно вписать окружность. В окружности диаметр делит перпендикулярную ему хорду пополам, значит, в треугольнике BAD высота является медианой и этот треугольник является равнобедренным: AB=AD. Аналогично, CB=CD. Так как суммы противоположных сторон четырехугольника ABCD равны, в него можно вписать окружность.

Ответ. Нет.

5. Петя записал на доску два целых числа. Каждую минуту Вася записывал на доску новое число, равное сумме двух каких-то чисел на доске. Спустя пять минут на доске оказались числа 21, 15, 12, 9, 6, 3,—3. Выберите все числа, которые гарантированно были записаны Васей.

Решение. Заметим, что число -3 обязательно должно быть записано Петей. Действительно, если это не так, то изначально на доске были 2 положительных числа, но тогда и все последующие числа тоже были положительными, и число -3 не могло оказаться на доске. Предположим, что второе число Пети — это 3. Тогда после первой минуты будет выписано число -3 + 3 = 0, которого нет в итоговом списке. Аналогично, если вторым Петиным числом будет 21, то на доске после первой минуты будет выписано число 21 - 3 = 18, которого также нет. Значит, 3 и 21 гарантированно выписаны Васей. Любое из оставшихся чисел может быть выписано Петей. Действительно, вычитая из него несколько раз 3, можно получить числа 6 и 3. Далее получаем те числа, которых не хватает, пользуясь некоторыми из равенств 6+3 = 9, 9+3 = 12, 12+3 = 15, 6+15 = 21.

Ответ: -3; 21