

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ 2024/2025 гг. МУНИЦИПАЛЬНЫЙ ЭТАП

ПРЕДМЕТ 11 КЛАСС

МАТЕРИАЛЫ ДЛЯ ЧЛЕНОВ ЖЮРИ (КЛЮЧИ, КРИТЕРИИ ОЦЕНИВАНИЯ)

Максимальное количество баллов – 42 балла

1. Найдите какое-нибудь число A такое, что 2A является точным квадратом, а 3A — точным кубом натурального числа.

Решение: Например, $2^3 \cdot 3^2 = 72$. 2A - это квадрат числа 12, <math>3A - куб числа 6. **Критерии проверки**: Любой верный пример числа с проверкой – **7 баллов**, в остальных случаях – **0 баллов**.

2. Вася обычно идет до школы одной и той же дорогой с постоянной скоростью *v*. Однажды он увеличил скорость на 10% и пришел на 2 минуты раньше обычного. На сколько раньше он бы пришел, если бы увеличил скорость на 20%?

Ответ: на 3 мин 40 с.

Решение: Пусть обычно Васин путь занимал t минут. Значит, увеличив скорость, он прошел тот же путь за t-2 минуты. То есть имеем уравнение $1,1v\cdot(t-2)=vt$. После очевидных преобразований находим t=22 мин. Допустим при увеличении скорости на 20% он уменьшил бы время на x минут, тогда можно было бы написать аналогичное равенство: $1,2v\cdot(t-x)=vt\Rightarrow 1,2(22-x)=22\Rightarrow x=11/3$ минуты или 3 мин 40 сек.

Критерии проверки: Верное решение -7 баллов, ход решения верный, но получен неверный ответ из-за вычислительной ошибки -6 баллов, верно построена математическая модель (система уравнений) -2 балла, найдено, что обычно он проходит путь за 22 мин -2 балла, решение неверно или только ответ -0 баллов. (подчеркнутые баллы могут суммироваться)

3. В трапеции ABCD на большем основании AD отмечена точка K такая, что AB=BK и CK=CD. Площади треугольников ABK и CDK равны соответственно 30 и 6. Чему равна площадь треугольника BCK?

Ответ: 18.

Решение: Заметим, что площади треугольников ABK и CDK относятся как 5:1, значит отрезок AK в 5 раз больше отрезка KD (высоты у треугольников равны высоте трапеции). Пусть AK=5x, KD=x. Проведем высоты BM и CN, так как треугольники ABK и CDK равнобедренные, то M и N – середины AK и KD. Следовательно, MN=3x=BC. Тогда площадь треугольника BCK в 3 раза больше, чем площадь CDK (высоты одинаковые, а основания относятся 3:1) и равна 18.

Критерии проверки: Верное решение -7 баллов, показано, что BC в 2 раза меньше AD-2 балла, решение неверно -0 баллов.

ВС{}Ш

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ 2024/2025 гг. МУНИЦИПАЛЬНЫЙ ЭТАП

ПРЕДМЕТ 11 КЛАСС

4. Пусть $f(x) = x^2 - 2x$. Найдите все x, при которых верно неравенство $f(f(f(x))) \le 3$.

Ответ: $-1 \le x \le 3$.

Решение: Рассмотрим неравенство $f(t) \le 3 \Leftrightarrow t^2 - 2t - 3 \le 0$. Оно имеет решение $-1 \le t \le 3$. Тогда получаем неравенство $-1 \le f(f(x)) \le 3$. Легко заметить, что неравенство $f(t) \ge -1$ выполняется при всех t, следовательно исходное неравенство равносильно неравенству $f(x) \le 3 \Leftrightarrow -1 \le x \le 3$.

Критерии проверки: Верное решение -7 баллов, получено неравенство $-1 \le f(f(x)) \le 3 - 3$ балла, решение неверно -0 баллов.

5. Сколькими способами число 2024 можно представить в виде суммы нескольких последовательных натуральных чисел?

Ответ: 3 способа.

Решение: Обозначим через n количество чисел, n>1. Запишем их сумму в виде: (k+1)+(k+2)+...+(k+n)=2024. Фактически требуется выяснить, какие значения могут принимать n и k.

Преобразуем равенство:

$$nk + \frac{n(n+1)}{2} = 2024 \Leftrightarrow 2nk + n(n+1) = 2 \cdot 2024 \Leftrightarrow n(2k+n+1) = 2^4 \cdot 11 \cdot 23.$$

Заметим, что левая часть равенства — произведение двух натуральных чисел разной четности, причем n - меньший множитель. Значит, если n — четное число, то это может быть только 16. Следовательно, получаем равенство $16(2k+17) = 16 \cdot 11 \cdot 23 \Rightarrow 2k = 236 \Rightarrow 118$.

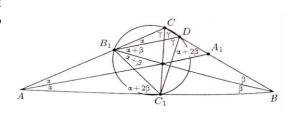
Если же n — нечетное число, то могут быть только два варианта его значений: 11 и 23. Эти варианты дают соответственно значения k, равные 178 и 76. Итого возможны три варианта.

Критерии проверки: Верное решение -7 баллов, получено уравнение и решение верно сведено к перебору нескольких вариантов, все случаи рассмотрены, но имеются ошибки — **не более 5 баллов**, составлено уравнение, но верно разобраны не все случаи (часть случаев пропущена) — **3 балла**, только составлено уравнение — **2 балла**, решение неверно или только ответ — **0 баллов**. (Во всех промежуточных критериях под *уравнением* подразумевается равенство вида $n(2k+n+1)=2^4\cdot 11\cdot 2$)

6. В треугольнике ABC проведены биссектрисы углов AA_1 , BB_1 , CC_1 (точки A_1 , B_1 и C_1 на сторонах треугольника). Известно, что $\angle AA_1C = \angle AC_1B_1$. Найдите $\angle ACB$.

Ответ: 120°.

Решение: Пусть в треугольнике ABC углы A, B и C равны соответственно 2α , 2β , 2γ , то есть $\alpha + \beta + \gamma = 90^{\circ}$. Проведем B_1D



ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ 2024/2025 гг. МУНИЦИПАЛЬНЫЙ ЭТАП

 ΔAB_1B),

ПРЕДМЕТ 11 КЛАСС

параллельно биссектрисе AA_1 , точка D на стороне BC, $\angle CB_1D = \alpha$.

Вычислим некоторые углы:

 $\angle AA_1C = \angle AC_1B_1 = \angle B_1DC = \alpha + 2\beta \text{ (внешний угол } \Delta AA_1B \text{)},$ $\angle BB_1C_1 = \angle AC_1B_1 - \angle C_1BB_1 = \alpha + \beta \text{ , } \angle BB_1C = 2\alpha + \beta \text{ (внешний угол }$

 $\angle DB_1B=lpha+eta$. Таким образом, треугольники $\Delta B_1BC_1=\Delta B_1DB$, значит треугольник B_1DC_1

равнобедренный и $\angle B_1DC_1 = \frac{1}{2}(180^\circ - 2(\alpha + \beta)) = 90^\circ - (\alpha + \beta) = \gamma$.

Тогда точки B_1 , C, D, C_1 лежат на одной окружности. А так как вписанные углы $\angle DCC_1 = \angle B_1CC_1 = \angle BDC_1 = \gamma$, то треугольник B_1DC_1 равносторонний. Следовательно, $\angle ACB = 2\gamma = 120^\circ$.

Критерии проверки: Верное решение – 7 баллов, решение неверно – 0 баллов.