РЕШЕНИЯ ЗАДАЧ 7 КЛАССА

Задача 1. На числовой оси нарисовали отрезок. Найдите координаты его концов, если точки M(3/2) и N(11/4) делят его на три равные части.

Ответ. 1/4 и 4. **Решение.** Пусть точки M и N делят на три равные части отрезок AB, причем точка M лежит между A и N, точка A имеет координату x, а точка B — координату y. Тогда 3/2-x=AM=MN=11/4-3/2, откуда x=1/4. Аналогично y-11/4=NB=MN=11/4-3/2, откуда y=4.

• Ответ без обоснования — *3 балла*. Логика решения верна, ответ неверен из-за ошибок в вычислениях — *не выше 3 баллов*.

Задача 2. Из вершины угла AOB провели луч OD, делящий его пополам. Оказалось, что этот луч образует с одной из сторон угла COB, смежного с AOB, угол, на 60° больший, чем COB. Какой могла быть величина угла AOB?

Ответ. 120° или 160°. **Решение.** Пусть $\angle COB = x$. Возможны два случая: $\angle COD = 60^\circ + x$ и $\angle BOD = 60^\circ + x$. В первом случае $\angle DOB = \angle DOC - \angle COB = 60^\circ$, откуда $\angle AOB = 120^\circ$. Во втором случае $180^\circ = 2\angle DOB + \angle COB = 2(60^\circ + x) + x$, откуда $x = 20^\circ$ и $\angle AOB = 160^\circ$.

• *По 2 балла* за каждый из двух ответов и *из 3 баллов* оценивается обоснование того, что других ответов нет. Логика решения верна, ответ неверен из-за ошибок в вычислениях — *не выше 4 баллов*.

Задача 3. Вася расставил в клетках таблицы размером 7×7 крестики и нолики (в каждой клетке — один знак). Оказалось, что в таблице есть 6 столбцов, в каждом из которых крестиков больше, чем ноликов. Могло ли оказаться, что в этой таблице есть 6 строк, в каждой из которых ноликов больше, чем крестиков?

Ответ. Могло. **Решение.** Аналогично решению задачи 5 для 5 класса.

• Только ответ «могло» — 0 баллов. Есть верный пример или его описание — 7 баллов. Нет верного примера или его описания — 0 баллов.

Задача 4. Докажите, что
$$\underbrace{22...2}_{1012$$
 цифр 1012 цифр 1012 цифр $\underbrace{22...3}_{2024$ цифры .

Решение. Положим $x = \underbrace{11...11}_{1012 \text{цифр}}$. Тогда равенство из условия можно переписать в

виде $2x+9x^2=(10^{1012}+1)x$. Поделив обе части полученного равенства на x, получаем $2+9x=10^{1012}+1 \Leftrightarrow 9x=10^{1012}-1=\underbrace{99...99}_{1012\text{цифр}}$. Последнее равенство очевидно.

Задача 5. Найдите все целые числа a, большие 1 и меньшие 1000, у которых куб суммы цифр равен a^2 .

Ответ. Единственное такое число — 27. **Решение.** Разложим квадрат искомого числа a на простые множители: $a^2 = p_1^{2\alpha_1} \dots p_n^{2\alpha_n}$. Так как этот квадрат также является кубом суммы цифр числа a, все показатели степеней $2\alpha_1, \dots, 2\alpha_n$ должны делиться на

- 3. Значит, на 3 должны делиться и числа $\alpha_1, \ldots, \alpha_n$, то есть число $a=p_1^{\alpha_1}\ldots p_n^{\alpha_n}$ само должно быть кубом натурального числа. Так как $10^3=1000$, достаточно проверить на выполнение условия задачи числа $2^3, \ldots, 9^3$. Сделав это, находим, что из них искомым является только число $3^3=27$: $27^2=(2+7)^3=729$.
 - Только ответ 1 балл.