Муниципальный этап Всероссийской олимпиады школьников по математике 2024/2025 учебный год

Решения задач и критерии оценивания. 9 класс

9.1 У каждого двузначного числа нашли сумму цифр, а потом все эти суммы перемножили. На сколько нулей заканчивается полученное произведение?

Решение: Количество нулей в произведении совпадает с наименьшей из степеней чисел 2 и 5 в разложении на множители. Числа 14, 23, 32, 41 и 50 с суммой цифр 5 дают в рассматриваемом произведении вклад в степень пятёрки равный 5. Девять двузначных чисел 19, 28, ..., 91 с суммой цифр 10 дают вклад +9 к степени пятёрки. Четыре числа 69, 78, 87, 96 с суммой цифр 15 дают ещё +4 к степени пятёрки. Суммы цифр 20 и более быть не может, поэтому итоговая степень вхождения числа 5 будет 5+9+4=18. Число 2 входит в разложение с большей степенью, т.к. 8 двузначных чисел 17, 26, ..., 80 с суммой цифр 8 дадут в произведении множитель 2^{24} .

Ответ: 18.

Критерии:

- \bullet Указано, что на количество нулей влияет степень чисел 2 и 5 в разложении 1 балл;
- \bullet Верно подсчитано количество двузначных чисел с суммой цифр, делящейся на 5,-5 баллов;
- \bullet Показано, что степень числа 2 в разложении больше, чем у 5,-1 балл.

9.2 Можно ли расставить по кругу 8 различных натуральных чисел так, чтобы для любых двух соседей отношение большего к меньшему было целым, и все такие отношения были различны и не превосходили 10?

Решение: Можно. Например, поставить по кругу 1 9 90 180 60 240 48 8, тогда интересующие нас отношения будут равны 9 10 2 3 4 5 6 8. Есть и другие варианты.

Критерии:

- Любой правильный пример 5 баллов;
- Указан верный пример и показано, что все отношения различны и укладываются в ограничения, плюс 2 балла.
- Любые рассуждения, почему это невозможно, -0 баллов.

9.3 Дано 6 отрезков разной длины таких, что из любых трёх можно составить треугольник. Докажите, что из всех шести отрезков можно составить 2 непрямоугольных треугольника, использовав каждый отрезок ровно один раз.

Решение: Упорядочим длины отрезков по возрастанию $a_1 < a_2 < \cdots < a_6$. Составим треугольники со сторонами (a_1, a_2, a_3) и (a_4, a_5, a_6) . Если они оба непрямоугольные, то всё в порядке. Предположим, что один из них прямоугольный, тогда рассмотрим две новые пары треугольников — $(a_1, a_2, a_4) + (a_3, a_5, a_6)$ и $(a_1, a_2, a_5) + (a_3, a_4, a_6)$. Относительно исходной пары треугольников здесь мы меняем в каждом из треугольников одну из сторон, причём в первом треугольнике заменяем большую сторону на большую, а во втором не наибольшую на не наибольшую. Отсюда следует, что так как все отрезки различны, а в прямоугольном треугольнике квадрат наибольшей стороны равен сумме квадратов меньших, то в полученных двух парах треугольников тот треугольник, который был изначально прямоугольным, теперь точно таковым не будет. А второй треугольник в паре не мог оказаться прямоугольным в обоих случаях одновременно.

Критерии:

- Придумана идея использовать упорядоченность отрезков по длине -1 балл;
- Сказано, что если в прямоугольном треугольнике заменить большую сторону на более длинную или не наибольшую на более короткую, то он станет непрямоугольным, но решение не доведено до конца (не разобраны какие-то случаи) 3 балла.

9.4 Числа а и в таковы, что уравнение $x^2 + ax + b = 0$ имеет корни x_1 и x_2 , $x_1 < x_2$. Известно, что, если заменить в этом уравнении коэффициент а на любое число из отрезка $[x_1, x_2]$, то полученное уравнение всё равно будет иметь корни. Докажите, что тогда оно будет иметь корни при всех a.

Решение: Покажем, что $b \le 0$, откуда и будет следовать утверждение задачи, так как дискриминант приведённого квадратного уравнения с неположительным свободным членом всегда неотрицателен. Предположим противное, т.е. b>0, тогда заменив коэффициент a на x_1 и x_2 получим, что уравнения $x^2+x_1x+b=$ и $x^2+x_2x+b=0$ имеют корни, а, значит их дискриминанты неотрицательны, откуда $x_1^2 \ge 4b$ и $x_2^2 \ge 4b$. Эти два неравенства можно перемножить, так как мы предположили, что b>0. Получим $(x_1x_2)^2 \ge 16b^2$, но $x_1x_2=b$ по теореме Виета, поэтому $b^2 \ge 16b^2$ — противоречие.

Критерии:

- Верное решение 7 баллов;
- При работе с неравенствами произведено их перемножение, не учитывающие знаки левой и правой частей, минус 0-5 баллов в зависимости от влияния на ход рассуждений.
- $\fbox{9.5}$ Серединные перпендикуляры к сторонам AC и BC неравнобедренного остроугольного треугольника ABC пересекают высоту из точки C или её продолжение в точках X и Y. Пусть O центр описанной окружености $\triangle ABC$. Докажите, что CO касается описанной окружености $\triangle OXY$.

Решение: Предположим без ограничения общности, что $\angle A > \angle B$. Пусть X лежит на серединном перпендикуляре к AC, а Y – на серединном перпендикуляре к BC. Заметим, что в равнобедренном $\triangle BCO$ угол $\angle BOC$ — центральный угол описанной окружности $\triangle ABC$, поэтому по теореме о вписанном угле $\angle BOC = 2\angle BAC$. Отсюда $\angle OCB = \frac{180^\circ - 2\angle A}{2} = 90^\circ - \angle A$. Так как прямая CY — высота $\triangle ABC$, то $\angle BCY = 90^\circ - \angle B$. Из полученных равенств мы получаем, что $\angle YCO = \angle A - \angle B$ и $\angle CYO = \angle B$ (так как $YO \perp BC$). Прямые OX и CX перпендикулярны сторонам AC и AB соответственно, поэтому угол между ними $\angle YXO$ равен $\angle A$. Зная внешний угол $\angle YXO$ треугольника CXO и угол $\angle XCO = \angle YCO$ этого треугольника, заключаем, что $\angle COX = \angle A - (\angle A - \angle B) = \angle B = \angle CYO = \angle XYO$. Теперь заметим, что касательная к описанной окружности $\triangle XYO$ в точке O образует со стороной OX угол равный половине дуги OX, что совпадает с величиной того же угла $\angle XYO$. Таким образом, отрезок CO и касательная в точке O образуют с отрезком OX один и тот же угол, а поэтому совпадают.

Критерии:

- Верное решение 7 баллов;
- Приведён подсчёт углов в законченном решении, опирающийся на конкретное расположение точек (например, не сделано предположение о соотношении углов $\angle A$ и $\angle B$ как в решении выше) минус 1 балл;
- Сформулировано правильное условие касания отрезка CO и окружности, но решение не доведено до конца 2 балла.