МИНИСТЕРСТВО ОБРАЗОВАНИЯ, НАУКИ И МОЛОДЕЖИ РЕСПУБЛИКИ КРЫМ КРЫМСКИЙ РЕСПУБЛИКАНСКИЙ ИНСТИТУТ ПОСТДИПЛОМНОГО ПЕДАГОГИЧЕСКОГО ОБРАЗОВАНИЯ

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО МАТЕМАТИКЕ. 2024-2025 гг.

МУНИЦИПАЛЬНЫЙ ЭТАП

9 КЛАСС

Задание 9.1.(7 баллов)

Найдите сумму цифр числа 10^{1000} — 10^{100} — 10^{10} —10

Ответ: 8989

Решение.

Находим сумму: 997·9+8·2=8989

Критерии оценивания:

Баллы	Правильность (ошибочность) решения
7	Задача полностью решена
6	Арифметическая ошибка при подсчёте искомой суммы
3	Сделан второй шаг
1	Сделан первый шаг
0	Приведен только ответ или задача не решена

Задание 9.2.(7 баллов)

Числа a и b удовлетворяют условию: $\frac{7a^3b^3}{a^6-8b^6}=1$. Чему может равняться значение выражения $\frac{a^2-b^2}{a^2+b^2}$?

Ответ : 0 или $\frac{3}{5}$.

Решение.

Преобразуем условие : a^6 - $7a^3b^3$ - $8b^3$ =0.

Решим уравнение как квадратное относительно a^3 и получаем:

$$(a^3+b^3)\cdot(a^3-8b^3)=0$$

Рассмотрим 2 случая:

1)Если $a^3 + b^3 = 0$, то $(a+b)(a^2-ab+b^2)=0$

a=-b и показываем , что $a^2-ab+b^2>0$, $a\neq b\neq 0$, следует из условия.

Подставим полученное значение:

$$\frac{a^2-b^2}{a^2+b^2} = \frac{b^2-b^2}{b^2+b^2} = 0$$

2) $a^3-8b^3=0$ $(a-2b)(a^2+2ab+4b^2)=0$, значит a=2b, подставим в условие

$$\frac{a^2 - b^2}{a^2 + b^2} = \frac{4b^2 - b^2}{4b^2 + b^2} = \frac{3}{5}$$

Ответ : 0 или $\frac{3}{5}$.

Критерии оценивания:

Баллы	Правильность (ошибочность) решения
7	Любое полное обоснованное решение
3	Рассмотрен один из случаев и получен 1 ответ
1	Получено уравнение: $(a^3 + b^3) \cdot (a^3 - 8b^3) = 0$
0	Приведен только ответ, задача не решена

Задание 9.3.(7 баллов)

Найдите все действительные значения a для которых все корни уравнения $a \cdot (2-a)x^2 - (a+4)x + 6 = 0$ натуральные числа.

Ответ:
$$\frac{1}{2}$$
; 1; 2

Решение.

Если a=0, то -4x+6=0, x не является натуральным числом

Если a=2, то x=1. И 1∈N

Пусть $a\cdot(2-a)\neq 0$. Решим квадратное уравнение. $D=(a+4)^2-24\cdot(2a-a^2)=(5a-4)^2$

Откуда получаем $\mathbf{x}_1 = \frac{3}{2-a}$ или $\mathbf{x}_2 = \frac{2}{a}$; $\frac{2}{a} = \mathbf{n}$ $\mathbf{n} \in N$

тогда $a=\frac{2}{n}$. Подставим: $\frac{3}{2-a}=\frac{3n}{2(n-1)}$ $n \in \mathbb{N}$ HOD(n; n-1)=1

n-1=1 или n-1=3 . Получим: n=2 или n=4 ; a=1 или $a=\frac{1}{2}$

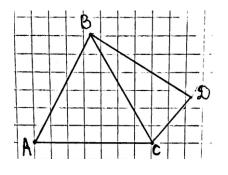
Ответ: $\frac{1}{2}$; 1; 2

Задание 9.4.(7 баллов)

На рисунке треугольники DB=BC= CA=AB .

Найдите величину угла ADC.

Ответ: ∠АDC=30⁰

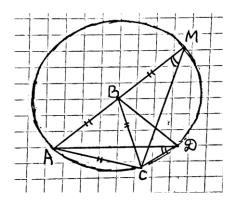


Решение.

По условию BD=BC=BA, построим окружность с центром в точке B.

Пусть AB пересекает окружность в точке M, тогда ∠AMC=∠ADC (опираются на одну дугу)

∠АМС=90° (АМ-диаметр). По условию треугольник АВС равносторонний, поэтому центральный угол∠ АВС= 60°. Вписанные углы ∠АМС=∠АDС=30°



Ответ: ∠АDC=300

Критерии оценивания:

Баллы	Правильность (ошибочность) решения
7	Любое полное обоснованное решение
3	Доказано, что ∠АМС=∠АDС и точки A,M, D,C – лежат на одной
	окружности.
1	Построена окружность с центром в точке В или отложен отрезок
	на прямой АВ, ВМ=АВ
0	Приведен только ответ

Задание 9.5.(7 баллов)

В строку выписаны правильные несократимые дроби со знаменателями 2,3,4,...2024

Миша и Олег перед каждой из дробей, по очереди ставят знаки «+» или «—». Миша начинает игру первый. Если в конце получается целое число, то Миша

выигрывает, а в противном случае выигрывает Олег. Кто из них выиграет при правильной игре?

Ответ: выиграет Миша.

Решение.

Рассмотрим дроби:
$$*\frac{1}{2}*\frac{1}{3}*\frac{2}{3}*\frac{1}{4}*\frac{3}{4}*...*\frac{1}{2024}*...*\frac{2023}{2024}$$

Первым ходом Миша перед дробью $\frac{1}{2}$ ставит «+»

Докажем лемму: если $\frac{a}{b}$, такая что HOD(a;b)=1, тогда дробь $\frac{b-a}{b}$ несократимая правильная дробь и HOD(a; b)=HOD(a ;b-a)

Согласно этой лемме количество дробей с одинаковыми знаменателями чётное .И сумма таких дробей равна 1 или -1.

Миша ожидает, пока Олег не добрался до дробей $\frac{1}{4}$ и $\frac{3}{4}$, и ходит аналогично. Т.е если Олег перед дробью $\frac{a}{b}$ ставит какой то знак, то Миша находит дробь $\frac{b-a}{b}$ и ставит тот же знак. В итоге сумма дробей будет целым числом.

Когда очередь дойдёт до дробей $\frac{1}{4}$ и $\frac{3}{4}$, то после хода Олега Миша добивается, чтобы получилась дробь $\frac{1}{2}$ или - $\frac{1}{2}$. Тогда сумма полученной дроби и первого хода Миши будет целым числом, а значит и вся сумма будет целым числом

Ответ: Миша выиграет при правильной стратегии

Критерии оценивания:

Баллы	Правильность (ошибочность) решения
7	Любое полное обоснованное решение, тактика.
3	Находят дроби вида $\frac{a}{b}$ и $\frac{b-a}{b}$. Указывается стратегия.
1	Показано, что количество дробей с одинаковым знаменателем четно