9.1. Дан квадратный трёхчлен f(x). Известно, что линейная функция y = f(x+1) - f(x) обращается в ноль только при x = 2024. При каком значении аргумента обращается в ноль функция y = f(x-1) - f(x)?

Otbet. x = 2025.

Решение. Обозначим линейную функцию f(x+1)-f(x) за g(x). По условию имеем g(2024)=0. Заметим, что функция h(x)=f(x-1)-f(x)=-g(x-1). Значит, h(x)=0, тогда и только тогда, когда -g(x-1)=0, что в свою очередь равносильно x-1=2024, то есть x=2025.

Комментарий. Верный ответ без обоснования -0 баллов.

9.2. На доске написаны четыре числа: 2, 3, 4 и 9. За один шаг можно выбрать любые три из них, первое умножить на 2, второе – на 4, а третье – на 6 (при этом три старых числа стирают, а на их место записывают три новых). Можно ли через несколько шагов получить на доске четыре равных числа?

Ответ. Нельзя.

Решение. Произведение изначальных чисел на доске равнялось $2^3 \cdot 3^3$, а после каждой операции оно увеличивается в $2 \cdot 4 \cdot 6 = 2^4 \cdot 3^1$ раз, поэтому после n таких операций произведение чисел на доске будет равно $2^{3+4n} \cdot 3^{3+n}$. Если после нескольких таких операций получились четыре равных числа, то их произведение имеет вид $2^{4x} \cdot 3^{4y}$, для натуральных x и y. Но число 3+4n не может равняться 4x, так как не делится на 4, получаем противоречие.

Комментарий. Верный ответ без обоснования -0 баллов.

9.3. Найдите значение суммы
$$S = (1^2 + 1 \cdot 3 + 3^2) + (3^2 + 35 + 5^2) + (5^2 + 5 \cdot 7 + 7^2) + \dots + (97^2 + 97 \cdot 99 + 99^2) + (99^2 + 99 \cdot 101 + 101^2)$$
.

Ответ.
$$\frac{101^3-1^3}{2} = 515150$$
.

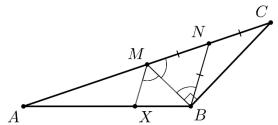
Решение. Заметим, что
$$a^2 + ab + b^2 = \frac{b^3 - a^3}{b - a}.$$
 Тогда
$$S = \frac{3^3 - 1^3}{3 - 1} + \frac{5^3 - 3^3}{5 - 3} + \dots + \frac{101^3 - 99^3}{101 - 99} = \frac{101^3 - 1^3}{2} = 515150.$$

Комментарий. Ответ записан в виде $\frac{101^3-1^3}{2}$ — баллы не снимаются.

9.4. В треугольнике ABC медиана BM образует со стороной BC прямой угол. На стороне AB отмечена точка X так, что $\angle BMC = \angle BMX$. Найдите, чему равно отношение AX:XB.

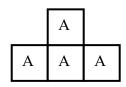
Ответ. 2:1.

Решение. Отметим середину отрезка CM — точку N. Отрезок BN является медианой, проведённой к гипотенузе, прямоугольного треугольника BMC, поэтому BN = MN. Тогда треугольник BMN равнобедренный, откуда $\angle NBM = \angle BMC = \angle BMX$. Значит, $BN \parallel MX$. Наконец, по теореме Фалеса AX:XB = AM:MN = 2:1.



Комментарий. Верный ответ без обоснования -0 баллов. Доказано, что медиана $BN \parallel MX - 2$ балла.

9.5. Взяли четыре клетчатых квадрата размера 7×7 (на рисунке обозначен A) и составили из них фигуру вида т-тетрамино (см. рисунок).



Все клетки исходных квадратов разделили одной из диагоналей на два треугольника. В результате получилось $7 \cdot 7 \cdot 4 \cdot 2$ треугольников. Пару таких треугольников назовем *соседями*, если у них есть общий катет. Можно ли разбить все треугольники на непересекающиеся пары соседей?

Ответ. Нельзя.

Решение. Рассмотрим шахматную раскраску клеток заданной фигуры (пусть для определенности угловые клетки чёрные). Заметим, что каждая пара соседей содержит ровно половину белой и ровно половину чёрной клетки. Если бы все треугольники можно было разбить на непересекающиеся пары соседей, то фигура содержала бы одинаковое количество чёрных и белых клеток. Однако в трёх квадратах 7×7 будет 25 чёрных и 24 белых клетки, а в одном — 24 чёрных и 25 белых, то есть всего в фигуре будет 99 чёрных и 97 белых клеток. Значит, разбить все треугольники на непересекающиеся пары соседей невозможно.

Комментарий. Верный ответ без обоснования -0 баллов.