Ключи к заданиям муниципального этапа всероссийской олимпиады школьников 2024/2025 учебного года по математике 9 класс

Методические рекомендации для жюри муниципального этапа олимпиады по оцениванию работ участников

Общие критерии оценок приводятся в следующей достаточно условной таблице. К некоторым задачам имеются дополнительные комментарии к оцениванию.

Оценка	Правильность (ошибочность) решения
7	Полное верное решение.
6-7	Верное решение. Имеются небольшие недочеты, в целом не
	влияющие на решение.
5-6	Решение в целом верное. Однако оно содержит ряд ошибок,
	либо не рассмотрение отдельных случаев, но может стать
	правильным после небольших исправлений или дополнений.
4	Верно рассмотрен один из двух (более сложный) существен-
	ных случаев, или в задаче типа «оценка + пример» верно
	получена оценка.
2-3	Доказаны вспомогательные утверждения, помогающие в ре-
	шении задачи, или в задаче типа «оценка + пример» верно
	построен пример.
1-2	Решения нет, но есть некоторые продвижения, которые яв-
	ляются частью решения.
1	Рассмотрены отдельные важные случаи при отсутствии ре-
	шения (или при ошибочном решении). Дан ответ к задаче
	без обоснования, если этот ответ не подсказан условием, не
	является очевидным и может задать направление поиска ре-
	шения.
0	Решение неверное, продвижения отсутствуют
0	Решение отсутствует.

- 1. Любое правильное решение оценивается в 7 баллов. Недопустимо снятие баллов за то, что решение слишком длинное, или за то, что решение школьника отличается от приведенного в методических разработках или от других решений, известных жюри; при проверке работы важно вникнуть в логику рассуждений участника, оценивается степень ее правильности и полноты.
- 2. Олимпиадная работа не является контрольной работой участника, поэтому любые исправления в работе, в том числе зачеркивание ранее написанного текста, не являются основанием для снятия баллов; недопустимо снятие баллов в работе за неаккуратность записи решений при ее выполнении.
- 3. Баллы не выставляются «за старание Участника», в том числе за запись в работе большого по объему текста, но не содержащего продвижений в решении задачи.
- 4. Победителями олимпиады в одной параллели могут стать несколько участников, набравшие наибольшее количество баллов, поэтому не следует в обязательном порядке «разводить по местам» лучших участников олимпиады.

Условия и решения задач

9.1 Несколько мальчиков пошли в лес за грибами Один из них нашел 6 грибов, а остальные по 13. В другой раз за грибами отправилось другое число мальчиков. Один из них нашел 5 грибов, а все остальные по 10. Сколько мальчиков собирали грибы в первый и во второй раз, если известно, что в обоих случаях было собрано одинаковое число грибов, причем это число больше 100, но не превышает 200?

Omeem: в первый раз мальчиков было 14, а во второй — 19.

Решение. Пусть в первый раз было n+1 мальчиков, во второй — m+1. Они собрали соответственно 6+13n и 5+10m штук грибов. При этом, согласно условию задачи:

$$100 < 6 + 13n = 5 + 10m < 200.$$

Отсюда имеем уравнение:

$$13n + 1 = 10m$$
,

с ограничениями:

$$7 < n < 15, \quad 9 < m < 20.$$

В интервале 7 < n < 15 имеется единственное значение n, при котором 13n+1 делится на 10. Это значение n=13. Таким образом, m=18.

Следовательно, в первый раз мальчиков было 14, а во второй — 19.

9.2 Миллион представлен как сумма двух натуральных слагаемых, каждое из которых делится на сумму цифр другого. Докажите, что слагаемые чётны.

Peшение. Обозначим натуральные слагаемые буквами A и B, тогда исходное условие примет вид

$$1000000 = A + B$$
.

Количество цифр в каждом из слагаемых не может быть больше шести, поэтому можем представить числа A и B в виде:

$$A = \overline{a_1 a_2 a_3 a_4 a_5 a_6}, \quad B = \overline{b_1 b_2 b_3 b_4 b_5 b_6},$$

где $a_i, b_i \in \{0, 1, \dots, 9\}.$

Числа A и B не могут быть разной чётности, иначе их сумма была бы нечётной.

Предположим, что они нечётные, тогда a_6 и b_6 нечётные.

Рассмотрим суммы цифр, стоящих на одинаковых местах:

$$a_6 + b_6 = 10$$
, $a_5 + b_5 = 9$, ..., $a_1 + b_1 = 9$.

Следовательно, при $1\leqslant i\leqslant 5$ одно из чисел a_i и b_i чётное, а другое — нечётное. Другими словами, если среди чисел a_i при $1\leqslant i\leqslant 5$ имеется k нечётных, то среди чисел b_i при $1\leqslant i\leqslant 5$ нечётных будет 5-k.

Так как мы предположили, что нечётны оба числа a_6 и b_6 , то суммы

$$(a_1 + a_2 + a_3 + a_4 + a_5 + a_6)$$
 и $(b_1 + b_2 + b_3 + b_4 + b_5 + b_6)$

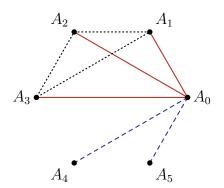
имеют разную чётность, и нечётные числа A и B не могут делиться на то из них, которое чётное. Противоречие.

Оба числа A и B могут быть чётными, например $A = B = 500\,000$.

Комметнарий. Доказательство невозможности нечётных слагаемых — 6 баллов.

9.3 Каждую сторону и каждую диагональ выпуклого шестиугольника покрасили в один из двух цветов — красный или синий. Докажите, что найдётся хотя бы один треугольник, образованный тремя вершинами и отрезками между ними, такой, что все его стороны окрашены в один цвет.

Решение. Обозначим вершины шестиугольника $A_0, A_1, A_2, A_3, A_4, A_5$. Рассмотрим отрезки, соединяющие эти точки. Для наглядности будем обозначать красные отрезки сплошной линией, а синие — пунктирной линией, как показано на диаграмме.



Рассмотрим пять отрезков, исходящих из точки A_0 : A_0A_1 , A_0A_2 , A_0A_3 , A_0A_4 , A_0A_5 . Каждый из этих отрезков окрашен либо в красный, либо в синий цвет. По принципу Дирихле, среди них обязательно найдутся как минимум три отрезка одного цвета. Без ограничения общности можно предположить, что три из них красные, а именно A_0A_1 , A_0A_2 , и A_0A_3 .

Теперь рассмотрим треугольник, образованный точками A_1, A_2 и A_3 . Если хотя бы одна его сторона красная, то существует красный треугольник, то есть все его стороны красные. В противном случае все три стороны треугольника $A_1A_2A_3$ синие, и тогда утверждение задачи также выполняется.

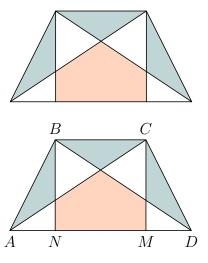
9.4 Квадратная таблица 10×10 заполнена различными натуральными числами от 1 до 100 по порядку так: слева направо первая строка 1, 2, 3, ..., 10, вторая строка 11, 12, 13, ..., 20 и так далее. Затем часть чисел стерли таким образом, что во всех строках и столбцах таблицы осталось ровно по 5 чисел. Найдите сумму оставшихся чисел.

Ответ: 2525.

Решение. Каждое число в таблице представим в виде суммы числа единиц и числа десятков, например, 65 = 60 + 5. В последнем столбце представим по особому правилу: второе слагаемое (число единиц) сделаем равным не 0, а 10, например, 70 = 60 + 10. Тогда первые слагаемые будут одинаковы в каждой строке, а вторые в каждом столбце. Подсчитывая суммы оставшихся чисел, будем отдельно суммировать первые и вторые слагаемые. Так как в каждой строке осталось по 5 чисел, то каждое число десятков встретится по 5 раз, и их общее число равно $5(0+10+20+\ldots+90)$. Так как в каждом столбце осталось по 5 чисел, то каждое число единиц встретится по 5 раз, и их общее число равно $5(1+2+3+\ldots+10)$. Сложив эти числа, получим искомый ответ.

9.5 В равнобедренной трапеции провели диагонали и высоты из вершин верхнего основания. Докажите, что сумма площадей заштрихованных треугольников равна площади заштрихованного пятиугольника.

Решение. Введём обозначения, как показано на рисунке.



В треугольнике ACM высота CM равна высоте трапеции, основание $AM = \frac{AD + BC}{2}$ равно средней линии трапеции. Поэтому площадь этого треугольника, как и треугольника BDN, равна половине площади трапеции, и сумма площадей этих треугольников равна площади трапеции. Тогда площадь их общей части, то есть заштрихованного пятиугольника, равна сумме площадей частей, непокрытых ими в трапеции, то есть заштрихованных треугольников.