Задача А. Дробление

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 512 мегабайт

Андрей учится в пятом классе и на уроке математики изучает дроби. Сегодня ребята проходили сложение дробей, и учитель дал пятиклассникам сложное домашнее задание.

Для четырех положительных целых чисел a, b, c и d назовем их $\partial poблением$ следующую сумму:

$$\frac{a}{b} + \frac{c}{d}$$

Требуется расставить четыре заданных числа в таком порядке, чтобы их дробление было как можно меньше.

Помогите Андрею переставить заданные числа таким образом, чтобы их дробление было минимальным возможным.

Формат входных данных

Единственная строка входных данных содержит четыре положительных целых числа – a,b,c и d ($1 \le a,b,c,d \le 10^9$).

Формат выходных данных

Выведите четыре числа, являющиеся перестановкой исходных, чтобы их дробление было минимальным возможным.

Если есть несколько подходящих способов переупорядочить числа, выведите любой из них.

Примеры

Стандартный ввод	Стандартный вывод		
1 2 3 4	1 3 2 4		
5 5 5 5	5 5 5 5		

Замечание

В первом примере, упорядочив числа таким образом, мы получаем дробление

$$\frac{1}{3} + \frac{2}{4} = \frac{5}{6}$$

получить меньшее значение невозможно.

Во втором примере дробление в любом случае будет равно

$$\frac{5}{5} + \frac{5}{5} = 2$$
.

Задача В. Закономерности

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Воодушевленный спиралью Улама, которая показывает загадочные закономерности распределения простых чисел, Петя решил изобразить свой собственный аналог.

Петя записывает в квадратную таблицу $n \times n$ целые числа от 1 до n^2 , начиная с верхнего левого угла, числа от 1 до n записываются в первый ряд, числа от n+1 до 2n- во второй, и так далее.

Затем он закрашивает те клетки, в которых записано число, имеющее не больше k различных натуральных делителей. Получившийся рисунок Петя изучает в надежде найти закономерности. Например, для n = 7, k = 3 у Пети получается такая картинка:

1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	2 0	21
22	23	24	25	26	27	28
29	30	31	32	33	34	35
36	37	38	39	40	41	42
43	44	45	46	47	48	49

Помогите Пете, выведите картинку, которая у него получится, изобразив закрашенные клетки звездочками «*», а незакрашенные точками «.».

Формат входных данных

Входные данные содержат два целых числа n и k ($1 \le n \le 40$, $1 \le k \le n^2$).

Формат выходных данных

Выведите n строк по n символов, j-й символ i-й строки должен быть равен «*», если j-я клетка i-го ряда Петиной таблицы закрашена, или «.», если нет.

Пример

Стандартный ввод	Стандартный вывод		
7 3	*****		
	.*.*.*		
	.		
	.*.*		
	.		
	.**.		
	**.*		

Задача С. Разные цифры

Ограничение по времени: 2 секунды

Ограничение по памяти: 512 мегабайт

Сене нравятся числа, в которых нет двух одинаковых цифр подряд. Задано целое число n. Помогите Сене найти минимальное целое число, строго большее n, которое ему нравится.

Формат входных данных

Входные данные содержат целое число n ($1 \le n \le 10^{18}$).

Формат выходных данных

Выведите минимальное целое число большее n, в котором нет двух одинаковых цифр подряд.

Пример

Стандартный ввод	Стандартный вывод
98	101

Задача D. Последняя битва

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Близится решающий бой между марсианами и людьми. Шпионы людей выяснили, что у марсиан осталось n бойцов. Также выяснилось, что у людей, как и у марсиан, осталось ровно n бойцов.

По опыту прошлых сражений люди знают, что i-го человека может победить только один марсианин, который имеет номер i.

Командир решил выстроить людей в шеренгу. Узнав планы марсиан, командир выяснил, что человек с i-й позиции в шеренге будет сражаться с марсианином номер a_i . Люди победят, только если каждый из бойцов гарантированно победит в своём бою.

Сначала командир поставил *i*-го человека на *i*-ю позицию в шеренге. После этого он понял, что у него осталось мало времени до битвы и люди могут проиграть, если оставить все как есть. За одну секунду он может переставить человека с последнего места в начало шеренги, после этой операции он оказывается на первой позиции, а номер позиции каждого из остальных бойцов увеличивается на 1.

Помогите командиру понять, за какое минимальное время он сможет перестроить шеренгу так, чтобы люди победили в решающем бою.

Формат входных данных

В первой строке задано целое число n – количество бойцов у каждой из сторон ($1 \le n \le 2$ · 10^5).

Во второй строке задано n различных целых чисел $a_1, a_2, ..., a_n$, где a_i — номер марсианина, с которым будет сражаться человек на i-й позиции в шеренге $(1 \le a_i \le n, \text{ если } i \ne j, \text{ то } a_i \ne a_i)$.

Формат выходных данных

Выведите единственное число k — минимальное число секунд, за которое командир сможет перестроить шеренгу так, чтобы люди победили. Если победить марсиан невозможно, выведите число «-1».

Примеры

Стандартный ввод	Стандартный вывод
5 1 4 2 3 5	2
5 1 3 5 2 4	-1

Замечание

В первом примере исходно бойцы стоят друг напротив друга следующим образом:

Марсиане: 1 4 2 3 5

Люди: 1 2 3 4 5

Люди проигрывают, поскольку марсиане номер 1 и 5 выигрывают свои поединки. После первой перестановки расстановка бойцов становится такой:

Марсиане: 1 4 2 3 5

Люди: 5 1 2 3 4

Теперь марсиане 2 и 3 выигрывают свой бой, поэтому необходимо провести ещё перестановку.

После неё расстановка бойцов становится такой, что все люди выигрывают свой бой.

Марсиане: 1 4 2 3 5

Люди: 4 5 1 2 3