Муниципальный этап всероссийской олимпиады школьников по программированию 2024-2025 учебный год

7-8 класс

Задача 1. В кафе на обед пришла группа туристов, которые заняли K_1 столов. Придя затем на ужин, эти же туристы сели за K_2 столов. Наблюдательный официант, выделенный специально для обслуживания этой туристической группы, заметил, что её участники очень общительны и в оба посещения за каждым столом сидело не менее трёх человек. Но в то же время за каждым столом не могло сидеть более четырёх человек. После ухода туристов официант заинтересовался, сколько же всего туристов было в его группе. Однако, однозначно определить это количество можно не всегда. Поэтому ему захотелось оценить, какое минимальное и какое максимальное количество туристов могло быть в группе.

Напишите программу, которая решает эту задачу — по заданным числам K_1 и K_2 выводит минимальное и максимальное количество участников туристической группы. Гарантируется, что хотя бы одно количество туристов соответствует условию задачи.

Ввод: в двух строках содержатся два натуральных числа K_1 и K_2 ($1 \le K_1$, $K_2 \le 1000$).

Вывод: выводится два целых числа, разделенных пробелом — минимальное и максимальное количество туристов, которое могло быть в группе.

Примеры работы программы:

Ввод	Вывод	
5	15 16	
4		

Пояснение к примеру. В группе могут быть 15 человек: в обед они расселись за пятью столами по трое, а на ужине могли занять столы по схеме 4-4-4-3. Но в группе также могло быть и 16 человек: если, например, в обед они рассаживались в порядке 3-3-3-4, а на ужине сели по четверо за каждый стол.

Задача 2. Миша очень любит читать и рассматривать старинные книги. Как-то в учебнике 19-го века по арифметике ему встретилась такая задача: «Купец купил 25 аршин парчи и атласа за 675 руб. Спрашивается, сколько аршин купил он того и другого, если парча стоила 40 руб. за аршин, а атлас ... руб.?» На месте многоточия в учебнике стояла чернильная клякса, вероятно, поставленная в далёком прошлом нерадивым учеником. Казалось бы, при неполных данных задачу решить нельзя. Но Мише стало интересно, сколько же стоил аршин атласа? Ему показалось, что на этот вопрос можно ответить.

В связи с этим вам требуется написать программу, которая решала бы следующую задачу. Купец купил T аршин ткани за S рублей. При этом аршин парчи стоил P рублей. Программа должна определить и напечатать, сколько рублей стоил один аршин атласа. Предполагается, что купец купил не менее одного аршина парчи и не менее одного аршина атласа. Гарантируется, что хотя бы одно решение задачи существует. Если решений будет несколько, то напечатать какое-нибудь одно.

Ввод: в трёх строках вводятся три натуральных числа T, S и P ($2 \le T \le 1000$; $10 \le S \le 1000000$; $1 \le P \le 1000$).

Вывод: выводится одно натуральное число – стоимость одного аршина атласа.

Примеры работы программы:

Ввод	Вывод	
25 675	15	
675		
40		
6	8	
58		
10		

Пояснение к примерам. В первом примере купец купил 12 аршин парчи и 13 аршин атласа по 15 рублей (то есть, 12*40+13*15=675) и это единственно возможный вариант ответа. Во втором примере возможны два решения: либо 4 аршина парчи и 2 аршина атласа по 9 рублей, либо 5 аршин парчи и 1 аршин атласа по 8 рублей, то есть 4*10+2*9=5*10+1*8=58.

Задача 3. Дмитрий любит возиться с числами. Однажды он обнаружил у числа 2025 интересное свойство: если первую половину числа сложить со второй его половиной и полученную сумму возвести в квадрат, то в результате опять получится исходное число: $(20+25)^2=2025$. Дмитрий предположил, что, наверное, существуют и другие числа с таким свойством; он назвал их квадрогенными. При этом, если в записи числа количество цифр нечётно, то сначала к ней приписывается слева цифра 0. Таким образом, число 1, например, тоже оказывается квадрогенным: $(0+1)^2=01$. Дмитрию стало интересно, часто ли встречаются квадрогенные числа. Помогите Дмитрию исследовать этот вопрос. Напишите программу, которая быстро определит, сколько имеется квадрогенных чисел в заданном диапазоне чисел от N_1 до N_2 включительно.

Ввод: в двух строках вводятся два натуральных числа N_1 и N_2 ($1 \le N_1 \le N_2 < 10^9$).

Вывод: выводится одно натуральное число – искомое количество квадрогенных чисел.

Примеры работы программы:

Ввод	Вывод	
2025	1	
2100		
80000	2	
500000		

Пояснение ко второму примеру. В заданном диапазоне квадрогенными являются числа 88209 и 494209.

Задача 4. Плиточных дел мастеру надо наклеить на стену в ванной комнате декоративное кафельное покрытие длиной $N \, \partial M$ и высотой $H \, \partial M$. В его распоряжении имеются плитки двух типов: квадратные размером $3 \times 3 \, \partial M^2$ и прямоугольные размером $2 \times 3 \, \partial M^2$. Квадратные плитки все однотонные, а на прямоугольных плитках нанесён одинаковый декоративный рисунок. Причём рисунок такой, что приклеивать прямоугольные плитки на стену следует только в горизонтальном положении. Ваша задача определить, сколько у мастера имеется различных способов наклейки плиток на стену.

Считать, что толщина шва между плитками равна нулю, а в распоряжении мастера имеется неограниченное количество плиток обоих типов. Поворот квадратных плиток на 90° , а также поворот прямоугольных плиток на 180° нового способа наклейки не дают.

Ввод: в двух строках вводятся два натуральных числа N и H ($3 \le N \le 15$, $2 \le H \le 18$). Гарантируется, что N делится на 3 нацело.

Вывод: выводится одно натуральное число – искомое количество способов наклейки.

Примеры работы программы:

Ввод	Вывод
6	4
5	
3	5
9	

Пояснение к первому примеру. В первом примере возможны следующие 4 способа наклейки: