9

1. (10

(),

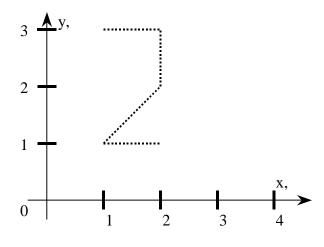
3) $_3 = _2$ $V_{x3} = 0$ /

 $_{3}=2$; $V_{x4}=-1$ /; $_{4}=2$ -1 / 1 =1 . 4) $_{4} = _{3} + V_{x4}t;$

3 **★**x, \mathbf{x}_2 x_3 2 1 • \mathbf{x}_1 0 2 1 3 4

 $y = y_o + V_y t$

1) $y_0 = 1$; $y_1 = 0$ /; $y_1 = y_0 = 1$


2) $y_2 = y_1 + V_{y2}t$

 $y_1=1$ $V_{y2}=1$ / $y_2=3$ $V_{y3}=0$ / $y_3=3$ 3) $y_3 = y_2 + V_{y3}t$

3 **★**y, 2 • 1 y_1 0 2 3 1

; 1 1; 2 2;

3 3; 4 4.

3. (10

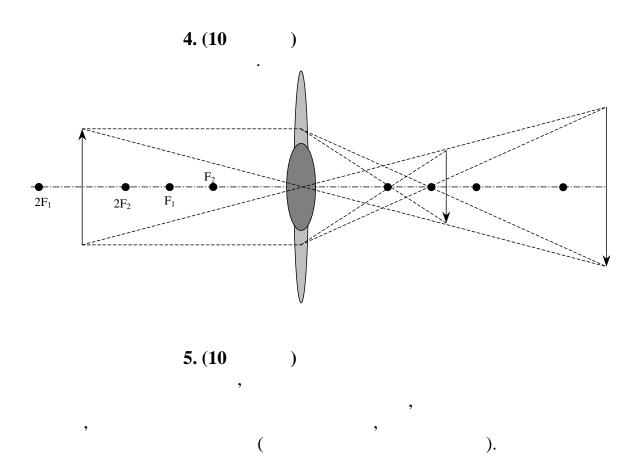
r.

$$I = \frac{U}{R} = \frac{U}{R + \frac{Rr}{R + r}} = \frac{U(R + r)}{R(R + 2r)}$$
(1)

$$(1) \qquad U = IR + U_1 \quad (2).$$

$$(1) \qquad (2), \qquad \vdots \qquad \frac{U - U_1}{R} = \frac{U(R + r)}{R(R + 2r)} \qquad (3),$$

$$r = R \qquad U_1 \qquad (4)$$


$$R = \frac{1}{R(R+2r)}$$

 $r = R \frac{U_1}{U - 2U_1} \qquad (4).$

10 (n = 10),

 $(\mathbf{r}^1 = \frac{r}{10}) .$ (3):

$$U_1^1 = \frac{UU_1}{nU - 2(n-1)U_1}.$$
 (, ,) :
$$U_1^1 = 47,62$$

- 45.