
2015/2016

, ,

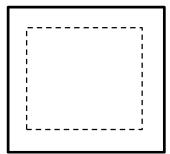
$$S = v \cdot t.$$
 $t=5 c$ $S_1 = -5 \cdot 5 = 25$.

,
$$S = S_1 + v \cdot t \qquad S = v \cdot t \ .$$

$$S_0 = 0.$$

$$S_1 + v \cdot t = v \cdot t,$$

 $t = \frac{S_{1\Gamma}}{(v_{3} - v_{\Gamma})} = \frac{v_{\Gamma}t_{1}}{(v_{3} - v_{\Gamma})} = \frac{5 \cdot 5}{7,5 - 5} = 10 \text{ c.}$


:

	1	
,		,
0	0	0
1	5	0
2	10	0
3	15	0
4	20	0
5	25	0
6	30	7,5
7	35	15
8	40	22,5
9	45	30
10	50	37,5
11	55	45
12	60	52,5
13	65	60
14	70	67,5
15	75	75
16	80	82,5
17	85	90
18	90	97,5
19	95	105
20	100	112,5

2:

	2.	
1	$S = v \cdot t$	1
2	$S_1 = =5.5=25$	1
3	$S = S_1 +$	
	$\mathbf{v} \cdot \mathbf{t} \qquad \mathbf{S} = \mathbf{v} \cdot \mathbf{t}$	3
4	$S_1 + v \cdot t = v \cdot t,$	3
5		2

3 10 18 1 3 30 .

3 a-2x , , x -

a -

$$4(a-2x)$$
.
3
 $4\cdot 3(a-2x)=Vt$.

$$x = \frac{a - \frac{V \cdot t}{4 \cdot 3}}{2}$$

x = 2,5.

: 2,5

3:

1	a-2x	2
2	4(a-2x)	2
3	3 4.3(a-2x)=Vt	3
4		3

4

10

$$m_1 = 1$$
 $V_0 = 3$.

$$m_1 = 1 \\ ? \\ 1 = 1300 \ / \ ^3, \\ 2 = 1100 \ / \ ^3, \\ 0 = 1000 \ / \ ^3.$$

4

$$\begin{array}{ccc} V_1 & V_2 \\ V = V_1 + V_2 & (1) \\ , & V \\ & m_x \end{array} , \label{eq:volume}$$

 m_1

$$V = \frac{m_1 + m_x}{\rho_z} \tag{2}$$

 V_1

$$V_1 = \frac{m_1}{\rho_1}$$

$$V_2 = \frac{m_x}{\rho_0}$$

$$\frac{m_1 + m_x}{\rho_z} = \frac{m_1}{\rho_1} + \frac{m_x}{\rho_0} \tag{3}$$

 $m_x = m_1 \cdot \frac{\rho_0}{\rho_1} \cdot \frac{\rho_2 - \rho_1}{\rho_0 - \rho_2}$ (4)

$$m_x = 1,538$$
 1,5

$$m_{0}=\rho_{0}\cdot V_{0}{=3}$$

$$m_0 - m_x = 3$$
 -1,5 =1,5 (5)

: 1,5

4:

1	(1)	2
2		2
3	(3)	2
4	, (4)	2
5		$\overline{2}$