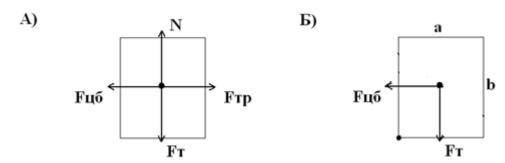
Происшествие на дороге (25 баллов)

Автомобиль на большой скорости входит в крутой поворот по дуге. Есть два варианта неприятного исхода события: автомобиль может вынести с дороги, и автомобиль может перевернуться. Определите, при каком коэффициенте трения шин о дорогу эти два события будут равновероятны. При расчетах автомобиль представить как параллелепипед с равномерно распределенной массой, шириной а и высотой **b**. Длина автомобиля намного меньше радиуса закругления дороги. Полотно дороги горизонтально.

Вариант решения

Условие, когда автомобиль выносит с дороги, соответствует выражению Fцб $\geq F$ тр центробежная сила больше либо равна силе трения (смотри рисунок A). Расписав силы Fцб $= \frac{mV^2}{R}$ и Fтр $= \mu mg$ приходим к выражению для радиуса поворота $R \leq \frac{V^2}{R}$



Условие, когда автомобиль начнет переворачиваться, соответствует выражению Мцб≥Мт момент центробежной силы больше либо равен моменту силы тяжести (смотри рисунок Б). Расписав моменты сил

приходим к выражению для радиуса поворота

$$R \le \frac{b}{a}V^2$$

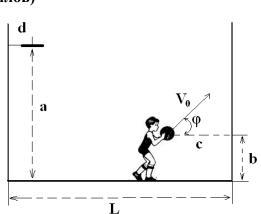
Приравнивая радиусы в обоих случаях, при условии, что скорость одинаковая, найдем искомое выражение: $\mu = \frac{a}{ha}$.

Критерии оценивания

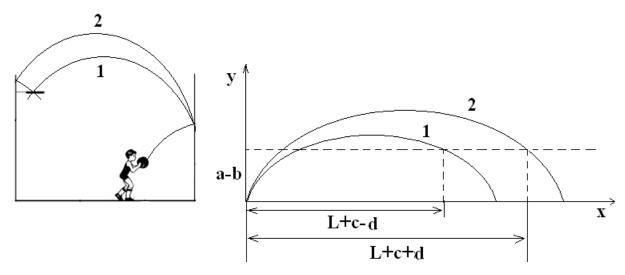
Определено условие «выноса» автомобиля с дороги - 10 баллов Определено условие переворота автомобиля - 20 баллов Получено окончательное выражение для коэффициента трения -5 баллов

Коронный бросок (30 баллов)

Пете хорошо удается забрасывать мяч в кольцо особым образом. Он становится лицом к противоположной стене на расстоянии c=2m и бросает в нее мяч под углом $\phi=60^0$ как показано на рисунке. Определите, с какой скоростью V_0 он должен бросить мяч. Расстояние между стенами L=5 м, высота кольца над полом a=3 м, кольцо отстоит от стены на расстоянии d=0,5 м, бросок производится с высоты b=1 м. Считать удар мяча о стену абсолютно упругим. Рассмотреть возможные варианты. (sin60=0,87 cos60=0,5 g=10 m/c^2 , ответ округлить до сотых).



Вариант решения.



Рассмотрим два случая: 1- мяч отскакивает от стены и летит в кольцо, 2- мяч отскакивает от одной стены, затем от второй и летит в кольцо. При абсолютно упругих ударах эквивалентный полет мяча можно изобразить как на рисунке. Уравнения, описывающие полет мяча:

$$x = V_0 t cos \varphi$$
 $y = V_0 t sin \varphi - \frac{gt^2}{2}$

в случае 1: x=L+c-d=6,5 м, y=a-b=2 м в случае 2: x=L+c+d=7,5 м, y=a-b=2 м

Подставляя данные, находим: 1) V_0 =9,56 м/с

2) $V_0 = 10.07 \text{ m/c}$

В задаче не сказано какой высоты потолок. Это означает, что рассмотренные случаи не единственный вариант и теоретически возможны случаи, когда мяч несколько раз отскочит от стен и попадет в кольцо. Для всех случаев координата \mathbf{y} останется постоянной \mathbf{y} =a-b=2 м, а координата \mathbf{x} будет меняться согласно уравнениям:

$$(1 + 2k)L + c - d = V_0 t cos \varphi$$

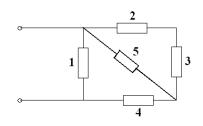
$$(1 + 2k)L + c + d = V_0 t cos \varphi$$
 где к=0,1,2,3,4...

Критерии оценивания

Представлена эквивалентная схема полета мяча — 5 баллов Записаны уравнения описывающие движения — 5 баллов Определена начальная скорость для одного варианта полета мяча — 5 баллов Определена начальная скорость для второго варианта полета мяча — 5 баллов Проанализированы другие возможные варианты полета мяча — 10 баллов

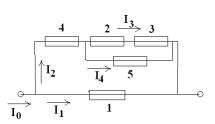
Чайная эстафета (10 баллов)

Пять одинаковых конфорок соединили, как показано на рисунке и подсоединили к электросети. Затем на них одновременно поставили пять одинаковых стаканов с водой. В какой очередности закипит вода в стаканах? Ответ поясните.



Вариант ответа

Поскольку сопротивления конфорок одинаковые, то большую мощность будет выделять та, через которую идет больший ток. Перерисовав эквивалентную схему видно, что ток I_0 делится на I_1 и I_2 , причем сопротивление ветки, через которую идет ток I_1 меньше, а значить этот ток максимальный и на этой конфорке закипит вода первой. I_2 = I_3 + I_4 следовательно на 4 конфорке закипит вода следующей. В ветке, где идет ток I_3 , сопротивление в два раза больше



чем в ветке с током I_4 и, следовательно, $I_4 > I_3$ затем закипит вода на 5 конфорке. И в последнюю очередь закипит вода на 2 и 3 одновременно. Очередность закипания: 1,4,5,2 и 3 (одновременно).

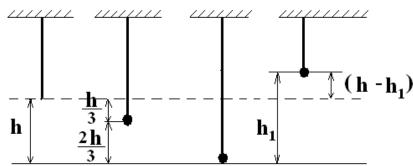
Критерии оценивания

За каждый этап правильно определенной последовательности с соответствующими объяснениями по 2 балла

Веселая катапульта (20 баллов)

Петя привязал резиновый жгут к потолку так, что свободный конец жгута находится на высоте h над полом. Когда Петя подвешивает к жгуту грузик, то конец жгута с грузом находится на высоте 2h/3 над полом. На какую высоту над полом h_1 будет подлетать грузик, если его притянуть к полу и отпустить? На какую высоту подлетал бы грузик, если заменить резиновый жгут пружиной.

Вариант решения



Резиновый жгут. После уравновешивания грузика на жгуте выполняется условие: $mg = k\frac{h}{3}$. Потенциальная энергия растянутого до пола жгута при его отпускании перейдет в потенциальную энергию грузика: $\frac{kh^2}{2} = mgh_1$

Решая совместно эти два уравнения, приходим к искомому выражению: $h_1 = \frac{3h}{2}$

Пружина. После уравновешивания грузика на пружине выполняется условие: $mg = k\frac{h}{3}$. Потенциальная энергия растянутой до пола пружины при ее отпускании перейдет частично в потенциальную энергию грузика и частично в потенциальную энергию сжатия пружины: $\frac{kh^2}{2} = mgh_1 + \frac{k(h-h_1)}{2}$

Решая совместно эти два уравнения, приходим к искомому выражению: $h_1 = \frac{4h}{3}$

Критерии оценивания

Приведены формулы условия равновесия и закона сохранения энергии для жгута
Приведено итоговое выражение для высоты подъема грузика на жгуте
- 6 балла
Приведены формулы условия равновесия и закона сохранения энергии для пружины
Приведено итоговое выражение для высоты подъема грузика на пружине
- 6 балла

Лед и вода (15 баллов)

Очень холодный кусок льда вынули из морозильной камеры и поместили в теплоизолированный сосуд. В сосуд налили один стакан кипящей воды. При этом весь кипяток превратился в лёд с температурой $T_0 = 0^0$ С. После того, как в сосуд налили ещё 8 таких же стаканов кипятка, весь лёд превратился в воду с установившейся температурой $T_0 = 0^0$ С. Найти начальную температуру льда T_{π} . Температура кипения воды $T_{\kappa} = 100^0$ С, удельная теплоёмкость воды $c_{\rm B} = 4200~{\rm Дж/(кг\cdot K)}$, теплоёмкость льда $c_{\pi} = 2100~{\rm Дж/(кг\cdot K)}$, теплота плавления льда $\lambda = 330~{\rm кДж/кг}$. ($T_{\kappa} = 100^0$ С)

Вариант решения

Уравнение теплового баланса для случая, когда вылили первый стакан кипятка:

$$c_{\scriptscriptstyle \Pi} m_{\scriptscriptstyle \Pi} (T_0 - T_{\scriptscriptstyle \Pi}) = \lambda m_{\scriptscriptstyle B} + c_{\scriptscriptstyle B} m_{\scriptscriptstyle B} (T_{\scriptscriptstyle K} - T_0)$$

Уравнение теплового баланса для случая, когда выливали кипяток в лед с температурой $T_0 = 0^0 \mathrm{C}$ $\lambda(m_{\scriptscriptstyle \rm J}+m_{\scriptscriptstyle \rm B})=c_{\scriptscriptstyle \rm B}8m_{\scriptscriptstyle \rm B}(T_{\scriptscriptstyle \rm K}-T_0)$

Решая совместно эти два уравнения, получим: $T_{\text{Л}} = T_0 - \frac{\lambda (c_{\text{В}}(T_{\text{K}} - T_0) + \lambda)}{c_{\text{Л}}(8c_{\text{B}}(T_{\text{K}} - T_0) - \lambda)} = -40^0 \text{ C}$

Критерии оценивания

Записано уравнение теплового баланса для случая, когда вылили первый стакан кипятка — 5 баллов Записано уравнение теплового баланса для случая, когда выливали кипяток в лед с температурой Определена температура льда – 5 баллов