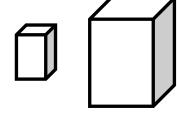
Решения заданий

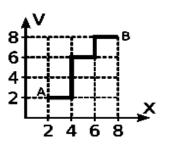

Всероссийская олимпиада школьников по физике Муниципальный этап 7 класс

Время выполнения 3 астрономических часа

Задание 1.

Мёд продается в коробочках, имеющих форму куба.

В маленькой коробочке содержится 2 килограмма мёда. Сколько мёда во второй коробочке, если её сторона в два раза больше, чем сторона маленькой коробочки?



Решение

Объем ищем по формуле:	$V_1 = a \cdot b \cdot c = a^3$	2 балла
Для большого куба:	$V_2 = (2a)^3 = 8a^3.$	2 балла
Значит, объем второй коробки в 8 раз больше.		2 балла
Масса равна плотность, умноженная на объем		2 балла
Во второй коробке 16 кг меда.		2 балла

Задание 2.

Часовой, охраняющий секретную территорию, все время двигается, чтобы не замёрзнуть. График зависимости его скорости V (в км/ч) от координаты X (в км) приведен на рисунке. Какое время требуется часовому, чтобы от точки A (x_1 = 2 км) дойти до точки B (x_2 = 8 км)?

Решение

Время движения часового складывается из времени, которое 2 балла он тратит на прохождение трёх промежутков: от 2 км до 4 км, от 4 км до 6 км, от 6 км до 8 км.

На каждом из этих промежутков скорость часового 2 балла постоянна.

Следовательно, можно вычислить время движения на 4 балла каждом из этих участков:

$$t_1 = (4 \text{ км} - 2 \text{ км}) / 2 \text{ км/ч} = 1 \text{ ч},$$

 $t_2 = (6 \text{ км} - 4 \text{ км}) / 6 \text{ км/ч} = 20 \text{ мин},$
 $t_3 = (8 \text{ км} - 6 \text{ км}) / 8 \text{ км/ч} = 15 \text{ мин}.$

Таким образом, складывая полученные результаты, 2 балла получаем: $T = t_1 + t_2 + t_3 = 1$ ч 35 мин.

Задание 3.

Масса пробирки, заполненной до краёв водой, составляет 50 г. Масса этой же пробирки, заполненной водой, с куском металла в ней массой 12 г составляет 60,5 г. Определите плотность металла, помещённого в пробирку. Плотность воды 1 г/см³. Ответ выразить в единицах системы СИ.

Решение:

Если бы часть воды из пробирки не вылилась, то общая масса 2 балла пробирки, воды и куска металла в ней была равна $50 \Gamma + 12 \Gamma = 62 \Gamma$.

По условию задачи масса воды в пробирке с куском металла в 6 балла ней равна 60,5 г. Следовательно, масса воды, вытесненной металлом 1,5 г, а, значит, объём воды, вытесненной металлом, равен $V = m/\rho$; V = 1,5 г / 1 (г/см³) = 1,5 см³.

Тогда $\rho = 12 \text{ г/ } 1,5 \text{ см}^3 = 8 \text{ г/ см}^3 = 800 \text{ кг/ м}^3.$

2 балла

Задание 4.

Определите объём одной горошины.

<u>Оборудование:</u> горох, вода, измерительный цилиндр, стакан.

Решение

Измерить объём 20-50 горошин (насыпной объём).

2 балла

Определить объём воды, необходимый для того, чтобы полностью 3 балла залить горошины водой.

Определить истинный объём гороха (из насыпного объема вычесть 3 балла объём воды)

Определить объём одной горошины, разделив истинный объём на 2 балла число горошин.

Решения заданий

Всероссийская олимпиада школьников по физике Муниципальный этап 8 класс

Время выполнения 3 астрономических часа

Задача 1. «Движение автомобиля»

Автомобиль проехал половину пути со скоростью v_1 =60 км/час, оставшуюся часть пути он половину времени двигался со скоростью v_2 =10 км/час, а последний участок — со скоростью v_3 =20 км/час. Какова средняя скорость автомобиля на всем пути?

Решение

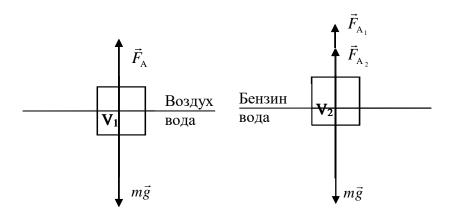
- 1. По определению средняя скорость это отношение пройденного пути S к полному времени движения t $v_{\text{сред}} = \frac{S}{t}$.
 - 2. По условию задачи для первой половины пути: $\frac{S}{2} = v_1 t_1$.
 - 3. Для второй половины: $\frac{S}{2} = v_2 \frac{t_2}{2} + v_3 \frac{t_2}{2}$.
 - 4. Очевидно, $t = t_1 + t_2$

5. Тогда
$$v_{\text{сред}} = \frac{S}{\frac{S}{2v_1} + \frac{S}{v_2 + v_3}} = \frac{2v_1(v_2 + v_3)}{2v_1 + v_2 + v_3}.$$

6. Вычисляя, получим $v_{\text{сред}} = 24$ км/ч.

Задача 2. «Стрельба по мишени»

Из орудия, ствол которого установлен горизонтально, производят выстрел по мишени. Разрыв снаряда виден через t_1 = 0,6 секунды, а звук от разрыва услышан через t_2 = 2,1 секунды после выстрела. На каком расстоянии от орудия находится мишень? С какой горизонтальной скоростью двигался снаряд? Скорость звука считать равной 340 м/с. Сопротивлением воздуха пренебречь.


Решение

- 1. Скорость света во много раз больше скорости звука в воздухе. Поэтому t_1 равно времени полета снаряда.
- 2. Время t_2 есть сумма времен движения снаряда и распространения звука от мишени до орудия. Тогда время распространения звука: $t = t_2 t_1$
 - 3. Дальность полета: $S = v_{3B}(t_2 t_1) = 510$ метров.
 - 4. Скорость снаряда $v_{ch} = S/t_1 = v_{3B}(t_2 t_1)/t_1 = 850$ м/с.

Задача 3. «Плавание в двух жидкостях»

Тело объемом V плавает в сосуде с водой, погрузившись в нее на 0,8 своего объема. Какая часть тела будет погружена в воду, если в сосуд долить бензин, полностью закрывающий тело? Плотность воды и бензина: $\rho_{\rm B} = 10^3~{\rm kr/m^3}, \, \rho_6 = 0,7 \cdot 10^3~{\rm kr/m^3}.$

Решение

Для тела в воде $F_a = mg$; $F_a = \rho_s g V_1 \Rightarrow mg = \rho_s g V_1$

Для тела в воде и бензине $mg = F_{a1} + F_{a2} = \rho_e g V_2 + \rho_6 g (V - V_2)$,

$$\rho_{e}gV_{1} = \rho_{e}gV_{2} + \rho_{6}g(V - V_{2}) \left| \frac{1}{Vg} \right| (1)$$

$$\rho_{e}\frac{V_{1}}{V} = \rho_{e}\frac{V_{2}}{V} + \rho_{6}\left(1 - \frac{V_{2}}{V}\right)$$

$$\rho_{e}\frac{V_{1}}{V} - \rho_{6} = \frac{V_{2}}{V}(\rho_{e} - \rho_{6})$$

$$\frac{V_{2}}{V} = \frac{\rho_{e}\frac{V_{1}}{V} - \rho_{6}}{\rho_{e} - \rho_{6}};$$

$$\frac{V_{2}}{V} = \frac{10^{3}(0, 8 - 0, 7)}{10^{3}(1 - 0, 7)} = \frac{0, 1}{0, 3} = 0, 33.$$
(2)

Otbet: $V_2/V = 0.33$

Задача 4. «Чайник на плите»

Алюминиевый чайник массой $m_1 = 400$ г, в котором находится $m_2 = 2$ кг воды при $t_1 = 10$ °C, помещают на газовую горелку. Найти мощность P горелки, если вода закипела через $\tau = 10$ мин, причем за это время $\Delta m = 20$ г воды выкипело. Чайнику с водой передается 40% тепла, выделяемого при сгорании газа. Температура кипения воды $t_k = 100$ °C. Теплоемкости воды и

алюминия и теплота парообразования воды соответственно равны $C_{_{g}}=4,18\frac{\kappa Д ж}{\kappa \Gamma^{\circ}C}\,,\;C_{_{al}}=0,9\frac{\kappa Д ж}{\kappa \Gamma^{\circ}C}\,,\;L=2,25\frac{M Д ж}{\kappa \Gamma}\,.$

Решение

1. Количество теплоты, получаемое от горелки, идет на нагрев воды и чайника и испарение воды, т.е.

$$Q = Q_1 + Q_2 + Q_3,$$

где Q_1 – количество теплоты, необходимое для нагрева воды

$$Q_1 = m_2 C_{\rm g} (t_k - t_1),$$

 Q_2 – количество теплоты, необходимое для нагрева чайника

$$Q_2 = m_{\scriptscriptstyle 1} C_{\scriptscriptstyle al} (t_k - t_{\scriptscriptstyle 1}),$$

 Q_3 – количество теплоты, необходимое для испарения воды $Q_3 = m_3 L$.

2.
$$Q = A_{\text{полезн}} = 0,4; A_{\text{полн}}$$
, а $P = \frac{A_{\text{полн}}}{\tau}$.

3.

$$\begin{split} P &= \frac{1}{0,4\tau} \Big(\big(t_{k} - t_{1}\big) \big(m_{2}C_{\!\scriptscriptstyle{\mathbf{S}}} + m_{1}C_{\!\scriptscriptstyle{\mathbf{A}I}}\big) + m_{3}L \,\Big) = \\ &= \frac{1}{600 \cdot 0.4} \Big(90 \big(8,36+0,36\big) + 45 \Big) = 3,46 \ \ \mathrm{K} \ \mathrm{BT} \end{split}$$

Ответ: 3,46 кВт.

Задание 5. «Экспериментальное»

Определите работу по вытаскиванию груза из воды.

Оборудование: измерительный цилиндр, груз, вода, динамометр, линейка.

Решение

Работа по вытаскиванию груза делится на два участка:

- 1. Подъём груза постоянной силой (до момента касания верхней гранью поверхности воды). Работу при этом можно найти по формуле A_1 =FS.
- 2. Подъём груза переменной силой. Участник олимпиады должен увидеть, что после того, как груз начал выходить из воды, сила тяги увеличивается (из-за уменьшения силы Архимеда).

Работу при этом можно рассчитать либо графически (по графику зависимости F от S), либо по формуле $A_2 = F_{\rm cp} S$, где $F_{\rm cp}$ это среднее арифметическое сил тяги в начале и в конце выхода груза из воды.

После этого необходимо найти суммарную работу $A = A_1 + A_2$.

Если выполнен только п.1 и обучающийся не увидел изменение силы при выходе груза из воды, то за выполнение этого задания целесообразно поставить 3 б.