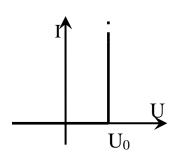
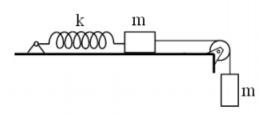

Муниципальный этап Всероссийской олимпиады школьников по физике 2017- 2018 учебный год 11 класс


1. В результате эксперимента учеником была получена pV —диаграмма, представленная на рисунке. Точки 1, 2, 3 диаграммы лежат на одной прямой, проходящей через начало координат. В ходе эксперимента при переходе из состояния 1 в состояние 2 и из 2-го в 3-е состояние ученик изменял объемна одну и туже величину. Какой была температура T_3 в состоянии 3, если в состояниях 1 и 2 температуры соответственно были равны T_1 и T_2 .

- 2. Человек, рост которого 1,7 м, стоит перед стеной, на которой укреплено плоское зеркало, верхняя грань которого находится на уровне глаз. Стена отклонена к человеку от вертикали на угол 9.74°. С какого расстояния он сможет увидеть в зеркале хотя бы какую-нибудь часть своего изображения?
- 3. В электрической цепи, схема которой изображена на рисунке, вольтметр и батарейка идеальные. Вольтамперная характеристика диода показана на графике. Что показывает вольтметр в этой цепи? Что он будет

если



полярность

изменить

включения диода?

4. В системе, показанной на рисунке масса каждого бруска m = 1 κz , жесткость пружины k = 20 H/m, коэффициент трения между бруском и плоскостью $\mu = 0,4$. Массы блока и пружины пренебрежимо малы. Система пришла в движение с нулевой начальной скоростью при

недеформированной пружине. Найдите максимальную скорость брусков.

5. Опишите метод определения индуктивности катушки со стальным сердечником с использованием следующего оборудования: источник постоянного тока с известным напряжением U_0 , резистор с известным сопротивлением R_0 , переменный конденсатор известной емкости, соединительные провода, ключ, диод и микроамперметр с сопротивлением r. Сопротивлением катушки можно пренебречь.

Муниципальный этап

Всероссийской олимпиады школьников по физике 2017- 2018 учебный год

11 класс

Ответы и указания к решению

1. По условию давление пропорционально объему. Обозначим коэффициент пропорциональности $\alpha = p/V$. Пусть $V = V_I$. Запишем уравнение состояния для все трех точек:

$$\alpha V^2 = \nu R T_1 \tag{1}$$

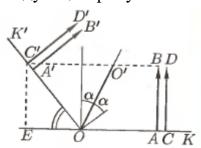
$$\alpha(V + \Delta V)^{\frac{1}{2}} = \nu R T_2 \tag{2}$$

$$\alpha(V + 2\Delta V)^2 = \nu R T_3 \tag{3}$$

Поделив (2) и (3) на (1) получим:

$$\left(1 + \frac{\Delta V}{V}\right)^2 = \frac{T_2}{T_1} \tag{4}$$

$$\left(1 + \frac{2\Delta V}{V}\right)^2 = \frac{T_3}{T_1} \tag{5}$$


Из (4) получим

$$\frac{\Delta V}{V} = \sqrt{\frac{T_2}{T_1}} - 1 \tag{6}$$

Подставив (6) в (5), найдем:

$$T_3 = T_1 \left(2 \sqrt{\frac{T_2}{T_1}} - 1 \right)^2$$

2. Решение поясняется следующим рисунком.

Пусть OK — пол, на котором стоит человек AB. Для построения изображения пола и человека проще всего перегнуть и сложить лист бумаги по прямой OO (плоскость зеркала) и на просвет построить изображение пола OK и человека A'B'. Из рисунка видно, что человек может увидеть хотя бы какуюто часть своего изображении я (ноги A'), если он будет стоять не далее точки C. Для расчетов рассмотрим треугольник C'OE. Искомое расстояние

OC'=OC, C'E=AB по построению. Тогда $OC'=\frac{C'E}{\sin \angle C'OE'}$. Из рис. видно,

что $\angle C'OE = 2\alpha$, т.е. $OC' = \frac{C'E}{\sin 2\alpha}$. Поскольку угол α мал, мы можем

заменить sin2α на 2α в радианном измерении, т.е. $OC' = \frac{C'E}{2\alpha} = 5$ м.

3. Если $\mathcal{E} < U_{\theta}$, то диод при любом варианте направления включения в цепь останется закрытым. Это означает, что ток в цепи будет отсутствовать, а вольтметр будет показывать $V = \mathcal{E}$.

Если $\mathcal{E}>U_{\theta}$, то диод будет открытым, напряжение на нём будет U_{θ} независимо от значения силы тока в цепи. По закону Ома для полной цепи: $\varepsilon = U_0 + I \cdot (R_1 + R_2).$

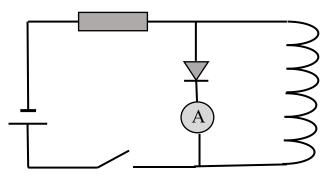
Сила тока в цепи
$$I = \frac{\varepsilon - U_{\theta}}{R_1 + R_2}$$
.

Показания вольтметра
$$V=U_{\theta}+IR_{I}=rac{arepsilon R_{I}+U_{\theta}R_{2}}{R_{I}+R_{2}}$$
 .

4. При опускании груза m, его скорость достигает максимального значения в момент, когда сила тяжести равна сумме сил упругости и трения,

т.е.
$$mg = kx + \mu mg$$
, следовательно, $x = \frac{mg(1-\mu)}{k}$ (1)
Используя закон сохранения энергии, запишем: $\Delta E_n + \Delta E_\kappa = A_{mp}$, то есть:

$$2 \cdot \frac{mv^{2}}{2} + \frac{kx^{2}}{2} - mgx = \mu mgx.$$
Отсюда $v = \sqrt{gx(1 - \mu) - \frac{kx^{2}}{2m}}$ (2)


Подставляя в последнее равенство x из (1), получим:

$$v = g(1-\mu)\sqrt{\frac{m}{2k}} = 0.95 \text{ m/c}^2$$

5. Если поменять полярность включения диода, то он будет закрыт, в цепи будет отсутствовать ток. Вольтметр будет показывать $V=\mathcal{E}$. Для измерения индуктивности соберем следующую электрическую цепь:

катушку течет ток $\frac{u_0}{R}$, через амперметр ток не течет, так как последовательно с ним После включен диод. размыкания ключа в цепи возникает ЭДС самоиндукции вследствие изменения магнитного потока в катушке,

При замыкании ключа через

которая создает ток, текущий через микроамперметр.

Магнитный поток в катушке равен $L \cdot \frac{u_0}{R}$, а ЭДС самоиндукции можно записать как $I \cdot r = \frac{q}{t} \cdot r$. С другой стороны эта же ЭДС по закону

электромагнитной индукции равна $-\frac{0-L\frac{U_0}{R}}{t}$. Приравнивая выражения, получаем $oldsymbol{q}=rac{L\cdot oldsymbol{U_0}}{R\cdot r},$ откуда $oldsymbol{L}=rac{oldsymbol{q}\cdot R\cdot r}{oldsymbol{U_0}}.$

Для определения величины заряда используем переменный конденсатор, который разряжаем через микроамперметр, тем самым градуируя его.

Критерии оценивания

Критерий	Балл
Идея определения индуктивности	2
Рисунок цепи с правильным положением диода	4
Получение выражения для индуктивности	2
Градуировка микроамперметра	2

Критерии оценивания расчётных задач.

Баллы	Правильность (ошибочность) решения
10	Полное верное решение
8	Верное решение. Имеются небольшие недочеты, в целом не
	влияющие на решение.
5-6	Решение в целом верное, однако, содержит существенные ошибки
	(только математические).
5	Найдено решение одного из двух возможных случаев.
2-3	Есть понимание физики явления, но не найдено одно из
	необходимых для решения уравнений, в результате полученная
	система уравнений не полна и невозможно найти решение.
0-1	Есть отдельные уравнения, относящиеся к сути задачи при
	отсутствии решения (или при ошибочном решении).
0	Решение неверное, или отсутствует.