Районный тур 2019. 10 класс. Решения.

Задача 1. І вариант.

Обозначим скорость вылета снаряда из дула V, а скорость поезда u.

Когда выстрел произведен неподвижной пушкой, дальность полета L равна отрезку ПВ на рисунке. По теореме Пифагора $L=\sqrt{1^1+4^2}=\sqrt{17}$ клеток.

С другой стороны, понятно, что $L=V_{\Gamma}t$, где $V_{\Gamma}=V\cos\alpha$ – горизонтальная скорость вылета из дула, а t – время полета снаряда. Заметим, что время t зависит только от того, как высоко подлетает снаряд, то есть от его начальной вертикальной скорости $V\sin\alpha$. Она одинакова при обоих выстрелах, потому что наклон дула к вертикали не меняется, а горизонтальное движение поезда влияет только на горизонтальное движение снаряда.

Итак, время полета снаряда равно t в обоих случаях. Скорость вылета снаряда при стрельбе из движущегося вагона складывается из $\overrightarrow{V}_{\Gamma}$ (горизонтальная скорость снаряда относительно пушки) и скорости поезда \overrightarrow{u} . При этом в системе отсчета земли снаряд вылетает с горизонтальной скоростью $\overrightarrow{V}_{\Gamma}+\overrightarrow{u}$. За время t снаряд переместится по горизонтали на $\overrightarrow{V}_{\Gamma}t+\overrightarrow{u}t$. Точка попадания из движущегося поезда — сумма векторов $\overrightarrow{V}_{\Gamma}t$ и $\overrightarrow{u}t$, причем

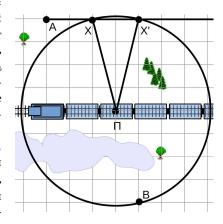


Рис. 1:

длина первого вектора равна L, а \vec{ut} сонаправлен с \vec{u} и параллелен рельсам.

Нарисуем окружность радиуса L с центром в Π и прямую XX', проходящую через A параллельно рельсам. Тем самым мы представили $\overrightarrow{\Pi A}$ в виде суммы векторов $\overrightarrow{\Pi X} + \overrightarrow{X A}$, удовлетворяющих условиям $|\Pi X| = L = \sqrt{17}$ клеток, $\overrightarrow{X A} \parallel \overrightarrow{u}$. То есть мы построили $\overrightarrow{V}_{\Gamma}t$ и $\overrightarrow{u}t$:

$$|\Pi X| = V_{\Gamma}t = L,$$
 $|XA| = ut \Rightarrow |\Pi X|/|XA| = V_{\Gamma}/u = V \cos \alpha/u$

Из рисунка $|\Pi X|/|XA|$ равно $\sqrt{17}/2$, значит, $V/u=\sqrt{17}/(2\cos\alpha)$ при $\alpha=30^\circ$. Вариант $\overrightarrow{\Pi A}=\overrightarrow{\Pi X'}+\overrightarrow{X'A}$ также удовлетворяет условиям задачи, поэтому второй ответ

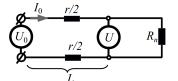
$$|\Pi X'|/|X'A| = \sqrt{17}/4 = V \cos \alpha/u \qquad \Rightarrow \qquad V/u = \sqrt{17}/(4\cos\alpha).$$

<u>Ответ</u>: Скорость вылета снаряда либо в $\sqrt{17/3} \simeq 2.38$ раз, либо в $\sqrt{17/12} \simeq 1.19$ раз больше скорости поезда. То ли поезд ужасно быстрый, то ли снаряды еле-еле вылетают...

Задача 2. І вариант.

На рис. 2 изображены две принципиальные электрические схемы: до аварии (слева) и после аварии (справа). Напряжения, регистрируемые в обоих случаях, измеряются между точками, показанными вольтметрами. Токи, измеренные по условию, показаны стрелками.

Мы обозначили через r сопротивление проводов между электростанцией и подстанцией; учтено, что между ними тянется два провода, каждый сопротивлением r/2. Через R_n обозначено суммарное сопротивление всех потребителей вместе с подключающими их проводами; по условию R_n после



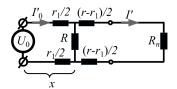


Рис. 2:

аварии не изменилось. Сопротивление упавшей ветки обозначили R. Также мы учли, что в момент аварии каждый из проводов r/2 был разбит веткой на два неизвестных сопротивления $r_1/2$ и $(r-r_1)/2$.

Искомое расстояние x от электростанции до ветки меньше, чем L во столько же раз, во сколько отличаются соответствующие сопротивления проводов $r_1/2$ и r/2 (см. рис. 2):

$$\frac{x}{L} = \frac{r_1}{r} \qquad \Rightarrow \qquad x = \frac{Lr_1}{r}.\tag{1}$$

До аварии напряжение подстанции U падало на сопротивлении R_n :

$$U = R_n I_0 \qquad \Rightarrow \qquad R_n = U/I_0.$$

А напряжение в целой схеме U_0 падало на суммарном сопротивлении $r + R_n$:

$$U_0 = I_0(r + R_n) \qquad \Rightarrow \qquad r + R_n = U_0/I_0. \tag{2}$$

Итак, параметры r и R_n исходной схемы нам теперь известны.

После аварии схема изменилась из-за ветки. Рассмотрим электрический контур 1 (см. рис. 3), содержащий U_0 , $r_1/2$, R и $r_1/2$. Через оба сопротивления $r_1/2$ идет ток I_0' , поэтому

$$U_0 = I_0' r_1 + U_B \qquad \Rightarrow U_B = U_0 - I_0' r_1$$

где U_B — падение напряжения на упавшей ветке R. Рассмотрим контур 2. Это же самое напряжение U_B падает на сопротивлениях $(r-r_1)/2$, R_n и $(r-r_1)/2$, через каждое из которых течет ток I':

Контур 1 Контур 2

$$I'_0 \quad r_1/2 \quad (r-r_1)/2 \quad I'$$
 $U_0 \quad R \quad R_n$
 $r_1/2 \quad (r-r_1)/2$

$$U_B = I'(r - r_1 + R_n).$$

Приравнивая полученные выражения для U_B , получим уравнение на r_1 :

$$U_B = U_0 - I_0' r_1 = I'(r - r_1 + R_n) \quad \Rightarrow \quad U_0 - I'(r + R_n) = (I_0' - I') r_1 \quad \Rightarrow \quad r_1 = \frac{U_0 - I'(r + R_n)}{(I_0' - I')}.$$

Подставляя это в (1), с учетом (2) получим ответ:

$$x = \frac{Lr_1}{r} = L \cdot \frac{U_0 - I'(r + R_n)}{(I'_0 - I')} \cdot \frac{I_0}{U_0 - U} = \frac{U_0 - I'U_0/I_0}{(I'_0 - I')} \frac{I_0 L}{U_0 - U} = \frac{U_0(I_0 - I')L}{(I'_0 - I')(U_0 - U)}.$$
 (3)

Ответ: расстояние задается формулой (3).

Задача 3. І вариант.

Обозначим установившуюся температуру $t_0 + \Delta t$. Разберемся, какова будет вместимость стакана при этой температуре.

Рассмотрим оловянный стакан при температуре t_0 ; он вмещает объем V_0 . Представим себе, что стакан до краев заполнен оловом. При нагревании олово в стакане будет расширяться синхронно с материалом стакана. Очевидно, при этом олово в любой момент будет аккуратно помещаться в стакан. Это естественно, ведь стакан вместе с оловянным содержимыми будет сохранять форму, как целый кусок свинца при расширении. Значит, полость в оловянном стакане расширяется также, как если бы состояла из олова. Заметим, что этот факт часто иллюстрируют в школьном курсе физики, демонстрируя, как расширяется отверстие в металлическом кольце, если последнее нагреть.

Итак, при температуре $t_0 + \Delta t$ оловянный стакан вмещает объём воды $V_0(1+\alpha_O\Delta t)$. Но чему равна масса воды такого объёма при этой же температуре? Для этого надо выяснить, как меняется с температурой плотность воды.

Если при t_0 вода имела плотность ρ_0 , некоторый объём V' и массу $\rho_0 V'$, то после нагревания до температуры $t_0 + \Delta t$ она будет иметь другую плотность ρ' и объем $V'(1 + \alpha_{\rm B} \Delta t)$, но масса ее от нагревания не изменится:

$$\rho_0 V' = \rho' V' (1 + \alpha_{\rm B} \Delta t) \qquad \Rightarrow \qquad \rho' = \frac{\rho_0 V'}{V' (1 + \alpha_{\rm B} \Delta t)} = \frac{\rho_0}{1 + \alpha_{\rm B} \Delta t}.$$

Значит, вода в стакане объёма $V_0(1+\alpha_O\Delta t)$ при температуре $t_0+\Delta t$ будет иметь массу

$$m = \rho' V_0 (1 + \alpha_O \Delta t) = \frac{\rho_0 V_0 (1 + \alpha_O \Delta t)}{1 + \alpha_B \Delta t}.$$

В результате установления теплового равновесия оловянный материал стакана нагрелся на Δt , а горячая вода остыла на $t-t_0-\Delta t$. Это позволяет записать условие теплового баланса для нашей задачи:

$$C_0 \Delta t = cm(t - t_0 - \Delta t)$$
 \Rightarrow $C_0 \Delta t = \frac{c\rho_0 V_0 (1 + \alpha_O \Delta t)(t - t_0 - \Delta t)}{1 + \alpha_B \Delta t}.$

Преобразуем:

$$(1+\alpha_{\rm B}\Delta t)\Delta t = \frac{c\rho_0 V_0}{C_0}(1+\alpha_O\Delta t)(t-t_0-\Delta t) \qquad \Rightarrow \qquad$$

$$\Delta t + \alpha_{\rm B} \Delta t^2 = z(t - t_0 - \Delta t + \alpha_O \Delta t(t - t_0) - \alpha_O \Delta t^2), \qquad z \equiv \frac{c\rho_0 V_0}{C_0}.$$

Это квадратное уравнение на Δt : $(\alpha_{\rm B}+z\alpha_O)\Delta t^2+\Delta t(1+z-\alpha_Oz(t-t_0))-z(t-t_0)=0$

$$\Rightarrow \qquad \Delta t = \frac{-(1+z-\alpha_{O}z(t-t_{0})) \pm \sqrt{(1+z-\alpha_{O}z(t-t_{0}))^{2} + 4(\alpha_{\rm B} + z\alpha_{O})z(t-t_{0})}}{2(\alpha_{\rm B} + z\alpha_{O})}$$

Очевидно, нас интересует положительный корень, так как по условию $\Delta t > 0$. <u>Ответ</u>: в стакане установится температура

$$t_0 + \frac{\sqrt{(1+z-\alpha_O z(t-t_0))^2 + 4(\alpha_{\rm B} + z\alpha_O)z(t-t_0)} - (1+z-\alpha_O z(t-t_0))}{2(\alpha_{\rm B} + z\alpha_O)}, \quad z \equiv \frac{c\rho_0 V_0}{C_0}.$$

Задача 4. І вариант.

Так как трением о лёд можно пренебречь, при перепрыгивании акробата выполняется закон сохранения импульса (ЗСИ) в проекции на горизонтальные оси.

Рассмотрим сначала ЗСИ в проекции на ось x (см. рис. 4) До прыжка импульс в проекции на эту ось был нулевым, так как акробат вместе с диском ехал перпендикулярно оси x. После прыжка диск 2m приобрел проекцию скорости $-u'\sin\alpha$, а скреплённые диски с акробатом – некоторую скорость V_x . Здесь важно понимать, что стержень, параллельный оси x, практически мгновенно уравивает скорости скрепленных дисков в проекции на эту ось, поэтому скорость V_x будут иметь сразу после приземления акробата и сам акробат, и оба скреплённых стержнем диска. Итак, ЗСИ имеет вид

$$x: \quad 0 = 3mV_x - 2mu'\sin\alpha \qquad \Rightarrow \qquad V_x = \frac{2u'\sin\alpha}{3}.$$

Ситуация в проекции на ось y чуть сложнее. Начальный импульс системы до прыжка был равен 3mu, им обладал акробат m на диске массой 2m. Сразу после прыжка этот диск приобрел y-проекцию импульса, равную $-2mu'\cos\alpha$. Акробат уравнял свою скорость с диском, на котором стоит (за счет силы трения между ногами и диском), но y-компонента скорости скреплённых дисков при этом вовсе не выравняется. Действительно, нет силы, которая

уравняла бы эти y-компонеты, ведь стержень легкий и ориентирован в этот момент вдоль оси x, и только вдоль этой оси может действовать на диски.

Поэтому сразу после прыжка только акробат вместе со своим диском имеет некоторую y-компоненту скорости V_y , а скорость диска на втором конце стержня будет иметь лишь x-компоненту. ЗСИ в проекции на ось y будет иметь вид

$$y: 3mu = 2mV_y - 2mu'\cos\alpha \quad \Rightarrow \quad V_y = \frac{3u + 2u'\cos\alpha}{2}.$$

Итак, после приземления акробата он вместе с конструкцией начинает движение со скоростью V_x , при этом он вместе со своим диском обладает ещё и скоростью V_y , которой нет у диска на противоположном конце стержня. Как же будет при этом двигаться конструкция дальше? Вообще говоря, траектория дисков будет достаточно сложной и криволинейной. К счастью, рассмотрев положение центра масс системы, с ней всё-таки можно разобраться.

Центр масс системы скрепленных дисков и акробата расположен в точке О (рис. 4). Так как на систему не действуют внешние силы, этот центр масс будет равномерно двигаться с постоянной ско-

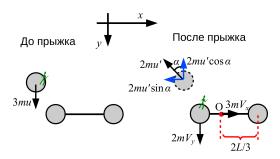


Рис. 4:

ростью. Диски же будут вращаться вокруг этого центра масс. Поэтому, перейдя в систему отсчёта центра масс, мы увидим, что траектории дисков в этой системе – окружности.

Центр масс системы движется с постоянной скоростью: её проекция на ось x равна V_x . Скорость центра масс в проекции на ось y равна отношению y-проекции импульса конструкции $2mV_y$ к массе 3m конструкции, т.е. $2V_y/3$.

Изобразим скорости дисков в исходной системе отсчёта и перейдём в систему отсчета центра масс (см. рис. 5). Для перехода в другую систему отсчёта, как всегда, ко всем скоростим следует добавить один и тот эксе вектор скорости. В нашем случае добавляем такой вектор, чтобы центр масс в результате перехода к новой системе отсчёта остановился.

Диски будут вращаться вокруг точки O, и стержень будет снова сориентирован параллельно оси x, когда каждый диск пройдёт полокружности, окружность, полторы окружности и т.д... Пусть диски совершили полуцелое число оборотов, то есть повернулись на угол $\pi + 2\pi n$ (n – произвольное целое число). Это произойдет через время

$$V_x$$
 V_x V_x $V_y/3$ $V_y/3$ V_y C.O. земли С.О. центра масс

Рис. 5:

$$t = \frac{\pi(1+2n)L}{V_u} = \frac{2\pi(1+2n)L}{3u + 2u'\cos\alpha}.$$

За это время акробат, во-первых, переместится вдоль x на $s_*=2L/3$ за счёт кругового движения вокруг O; во-вторых, он переместится вдоль той же оси на $V_x t$ вместе с центром масс; в третьих, он переместится вдоль оси y на $2V_y t/3$ вместе с центром масс. Суммарно его перемещение составит

$$s_n = \sqrt{(s_* + V_x t)^2 + \left(\frac{2V_y t}{3}\right)^2} = \sqrt{\left(\frac{2L}{3} + \frac{2u'\sin\alpha}{3} \frac{2\pi(1+2n)L}{3u + 2u'\cos\alpha}\right)^2 + \frac{4\pi^2(1+2n)^2L^2}{9}}.$$

В последнем равенстве мы подставили найденные ранее $V_x,\,V_y,\,s_*$ и t.

Ну а чтобы стержень повернулся на целое число оборотов, $2\pi n$, должно пройти время $t'=2\pi nL/V_y$, а s_* будет равно нулю, все же остальные рассуждения окажутся прежними, поэтому в этом случае суммарно перемещение акробата составит

$$s'_n = \sqrt{\left(s_* + V_x t'\right)^2 + \left(\frac{2V_y t'}{3}\right)^2} = \sqrt{\left(\frac{2u' \sin \alpha}{3} \frac{4\pi nL}{3u + 2u' \cos \alpha}\right)^2 + \frac{16\pi^2 n^2 L^2}{9}}.$$

<u>Ответ</u>: Стержень много раз будет оказываться параллелен своему первоначальному положению. В эти моменты перемещение акробата составит s_n и s'_n , где

$$s_n = L\sqrt{\left(\frac{2}{3} + \frac{4\pi(1+2n)u'\sin\alpha}{9u + 6u'\cos\alpha}\right)^2 + \frac{4(1+2n)^2\pi^2}{9}}, \qquad s_n' = L\sqrt{\left(\frac{8\pi nu'\sin\alpha}{9u + 6u'\cos\alpha}\right)^2 + \frac{16\pi^2n^2}{9}},$$

n — произвольное целое число. Когда такое произойдет в первый раз, перемещение акробата составит $s_{n=0}$.

Задача 5. І вариант.

Если доска, погружаясь в жидкость, остаётся вертикальной, то изображение лампочки всегда имеет *х*-координату, равную 2*a*. Действительно, чтобы построить изображение лампочки Л, нужно опустить перпендикуляр ЛО от предмета Л на плоскость зеркала и расположить на продолжении ЛО изображение Л' – за зеркалом – так, чтобы ЛО=ОЛ'. Таким образом, в этом случае график выглядит как на рис. 6.

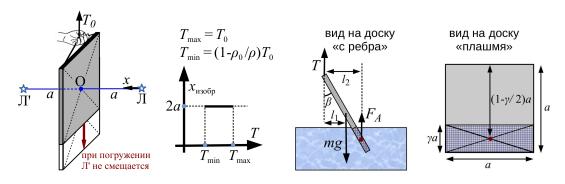


Рис. 6: Рис. 7:

Интуитивно понятно, что достаточно тяжёлая доска (которая тонет в жидкости) будет погружаться вертикально. Но всегда ли так будет? Предположим, что возможно положение равновесия, представленное на рис. 7, когда доска висит, образуя угол β с вертикалью. Обозначим через d толщину доски, а через γ — долю длины доски, погружённую в жидкость (так, что на рис. 7 в жидкости находится площадь доски $\gamma a \cdot a$ и объём $\gamma a^2 d$). Заметим, что T_0 численно равно mg — силе тяжести доски. Тогда T_0 и силу Архимеда погруженной части доски можно связать с геометрическими размерами и плотностями:

$$mg = T_0 = \rho g a^2 d, \qquad F_A = \rho_0 g \gamma a^2 d, \qquad \Rightarrow F_A = \frac{\gamma \rho_0 T_0}{\rho}.$$
 (4)

Если наклонное положение равновесия для доски существует, в нём выполняются два условия: сумма сил, действующих на доску равна нулю $mg = T + F_A$, а также правило рычага. Правило рычага можно записать, например, относительно точки подвеса, $mgl_1 = F_Al_2$. При этом нужно учесть, что плечо силы mg равно $l_1 = (a/2)\sin\beta$, а плечо силы F_A равно $l_2 = a(1 - \gamma/2)\sin\beta$ (см. рис. 7). Эти два условия несложно записать в виде системы

Баланс сил:
$$mg = T + F_A$$
 Баланс моментов сил: $T_0 \frac{a \sin \beta}{2} = F_A a \left(1 - \frac{\gamma}{2}\right) \sin \beta$.

Производя сокращение на $a \sin \beta$ в последнем равенстве и подставляя (4), получим

Баланс сил:
$$T_0 = T + \frac{\gamma \rho_0 T_0}{\rho}$$
 Баланс моментов сил: $\frac{T_0}{2} = \frac{\gamma \rho_0 T_0}{\rho} \left(1 - \frac{\gamma}{2}\right)$.

Из баланса сил можно найти $T=T_0(1-\gamma\rho_0/\rho)$. Из баланса моментов найдём γ , решая квадратное уравнение:

$$\frac{1}{2} = \frac{\gamma \rho_0}{\rho} \left(1 - \frac{\gamma}{2} \right) \quad \Rightarrow \quad \frac{\rho}{\rho_0} = \gamma (2 - \gamma) \quad \Rightarrow \quad \gamma^2 - 2\gamma + \frac{\rho}{\rho_0} = 0. \quad \Rightarrow \quad \gamma = 1 \pm \sqrt{1 - \frac{\rho}{\rho_0}}.$$

Теперь мы видим, что такое решение существует (выражение под корнем не отрицательно) только в случае, если $\rho < \rho_0$, т.е. если доска может плавать в жидкости. Поскольку γ – доля погруженной части доски, должно выполняться неравенство $0 \le \gamma \le 1$. Поэтому физический корень – только с минусом перед корнем, $\gamma = \gamma_{kp} = 1 - \sqrt{1 - \rho/\rho_0}$. Обратите внимание, γ_{kp} фиксировано при заданных плотностях доски и жидкости.

Итак, если $\rho < \rho_0$, при вертикальном опускании точки подвеса происходит следующее. Сначала, пока доля погруженной части доски меньше γ_{kp} , доска висит вертикально. Изображение \mathcal{I}' при этом неподвижно. Затем мы продолжаем опускать точку подвеса вниз, но γ перестает меняться, а вместе с ним и сила Архимеда, и сила натяжения T (см. рис. 8). Изображение при этом постепенно смещается. Чем ниже опускается точка подвеса, тем сильнее отклоняется доска, «стараясь» сохранить объём погруженной части. В некоторый момент договоренность о том, что тол-

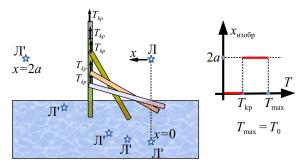


Рис. 8:

щиной доски можно пренебречь, становится неверной — когда β начинает отличаться от $\pi/2$ так мало, что погруженную часть нельзя считать параллелепипедом. С этого момента величина T начнёт уменьшаться, и в конце концов достигнет нуля; доска станет свободно плавать.

Получается, что положение Π' меняется только пока доска поворачивается и меняется угол β . При этом постоянна величина $\gamma=\gamma_{kp}$ и не меняется сила $T=T_{kp}=T_0(1-\gamma_{kp}\rho_0/\rho)$. Когда доска уже практически горизонтальна (при $\beta\simeq\pi/2$) T снова начнет меняться, но x-координата Π' остается равной нулю. Поэтому требуемый график представлен на рис. 8 справа.

Заметим, что досткамогла отклоняться от вертикали и в другую сторону. Однако, это влияет на положение изображения лишь при $T = T_{kp}$. Поэтому и в этом случае график остается ступенькой, представленной на рис. 8.

<u>Ответ</u>: при $\rho \ge \rho_0$ *x*-координата изображения не меняется и равна 2a, график представлен на рис. 6. При $\rho < \rho_0$ график представлен на рис. 8, он имеет вид ступеньки. Значению T_{kp} соответствует целый набор значений координаты изображения,

$$T_{kp} = T_0(1 - \gamma_{kp}\rho_0/\rho),$$
 где $\gamma_{kp} = 1 - \sqrt{1 - \rho/\rho_0}.$

Задача 1. II вариант.

Обозначим скорость вылета снаряда из дула V, а скорость поезда u.

Когда выстрел произведен неподвижной пушкой, дальность полета L равна отрезку ПВ на рисунке. По теореме Пифагора $L = \sqrt{1^1 + 4^2} = \sqrt{17}$ клеток.

С другой стороны, понятно, что $L=V_{\Gamma}t$, где $V_{\Gamma}=V\cos\alpha$ — горизонтальная скорость вылета из дула, а t — время полета снаряда. Заметим, что время t зависит только от того, как высоко подлетает снаряд, то есть от его начальной вертикальной скорости $V\sin\alpha$. Она одинакова при обоих выстрелах, потому что наклон дула к вертикали не меняется, а горизонтальное движение поезда влияет только на горизонтальное движение снаряда.

Итак, время полета снаряда равно t в обоих случаях. Скорость вылета снаряда при стрельбе из движущегося вагона складывается из $\overrightarrow{V}_{\Gamma}$ (горизонтальная скорость снаряда относительно пушки) и скорости поезда \overrightarrow{u} . При этом в системе отсчета земли снаряд вылетает с горизонтальной скоростью $\overrightarrow{V}_{\Gamma} + \overrightarrow{u}$. За время t снаряд переместится по горизонтали на $\overrightarrow{V}_{\Gamma}t + \overrightarrow{u}t$. Точка попадания из движущегося поезда – сумма векторов $\overrightarrow{V}_{\Gamma}t$ и $\overrightarrow{u}t$, причем

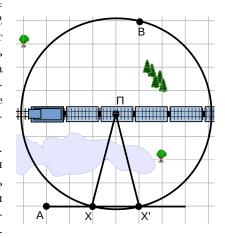


Рис. 9:

длина первого вектора равна L, а $\vec{u}t$ сонаправлен с \vec{u} и параллелен рельсам.

Нарисуем окружность радиуса L с центром в Π и прямую XX', проходящую через A параллельно рельсам. Тем самым мы представили $\overrightarrow{\Pi A}$ в виде суммы векторов $\overrightarrow{\Pi X} + \overrightarrow{X A}$, удовлетворяющих условиям $|\Pi X| = L = \sqrt{17}$ клеток, $\overrightarrow{X A} \parallel \overrightarrow{u}$. То есть мы построили $\overrightarrow{V}_{\Gamma} t$ и $\overrightarrow{u} t$:

$$|\Pi X| = V_{\Gamma}t = L,$$
 $|XA| = ut \Rightarrow |\Pi X|/|XA| = V_{\Gamma}/u = V \cos \alpha/u$

Из рисунка $|\Pi X|/|XA|$ равно $\sqrt{17}/2$, значит, $V/u=\sqrt{17}/(2\cos\alpha)$ при $\alpha=60^\circ$. Вариант $\overrightarrow{\Pi A}=\overrightarrow{\Pi X'}+\overrightarrow{X'A}$ также удовлетворяет условиям задачи, поэтому второй ответ

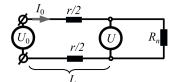
$$|\Pi \mathbf{X}'|/|\mathbf{X}'\mathbf{A}| = \sqrt{17}/4 = V\cos\alpha/u \qquad \Rightarrow \qquad V/u = \sqrt{17}/(4\cos\alpha).$$

<u>Ответ</u>: Скорость вылета снаряда либо в $\sqrt{17} \simeq 4.12$ раз, либо в $\sqrt{17}/2 \simeq 2.06$ раз больше скорости поезда. То ли поезд ужасно быстрый, то ли снаряды еле-еле вылетают...

Задача 2. II вариант.

На рис. 10 изображены две принципиальные электрические схемы: до аварии (слева) и после аварии (справа). Напряжения, регистрируемые в обоих случаях, измеряются между точками, показанными вольтметрами. Токи, измеренные по условию, показаны стрелками.

Мы обозначили через r сопротивление проводов между электростанцией и подстанцией; учтено, что между ними тянется два провода, каждый сопротивлением r/2. Через R_n обозначено суммарное сопротивление всех потребителей вместе с подключающими их проводами; по условию R_n после



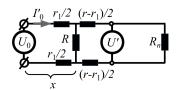


Рис. 10:

аварии не изменилось. Сопротивление упавшей ветки обозначили R. Также мы учли, что в момент аварии каждый из проводов r/2 был разбит веткой на два неизвестных сопротивления $r_1/2$ и $(r-r_1)/2$.

Искомое расстояние x от электростанции до ветки меньше, чем L во столько же раз, во сколько отличаются соответствующие сопротивления проводов $r_1/2$ и r/2 (см. рис. 10):

$$\frac{x}{L} = \frac{r_1}{r} \qquad \Rightarrow \qquad x = \frac{Lr_1}{r}.\tag{5}$$

До аварии напряжение подстанции U падало на сопротивлении R_n :

$$U = R_n I_0 \qquad \Rightarrow \qquad R_n = U/I_0.$$

А напряжение в целой схеме U_0 падало на суммарном сопротивлении $r + R_n$:

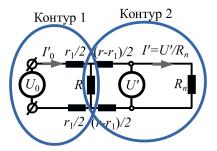
$$U_0 = I_0(r + R_n) \qquad \Rightarrow \qquad r + R_n = U_0/I_0. \tag{6}$$

Итак, параметры r и R_n исходной схемы нам теперь известны.

После аварии схема изменилась из-за ветки. Рассмотрим электрический контур 1 (см. рис. 11), содержащий U_0 , $r_1/2$, R и $r_1/2$. Через оба сопротивления $r_1/2$ идет ток I_0' , поэтому

$$U_0 = I_0'r_1 + U_B \qquad \Rightarrow U_B = U_0 - I_0'r_1$$

где U_B – падение напряжения на упавшей ветке R. Рассмотрим контур 2. Это же самое напряжение U_B падает на сопротивлениях $(r-r_1)/2$, R_n и $(r-r_1)/2$, через каждое из которых течет ток $I'=U'/R_n$:



$$U_B = I'(r - r_1 + R_n),$$
 где $I' = \frac{U'}{R_n} = \frac{U'I_0}{U}.$

Приравнивая полученные выражения для U_B , получим уравнение на r_1 :

$$U_0 - I_0' r_1 = \frac{U' I_0 (r - r_1 + R_n)}{U} \quad \Rightarrow \quad r_1 = \frac{U U_0 - I_0 U' (r + R_n)}{(U I_0' - U' I_0)}.$$

Подставляя это в (5), с учетом (6) получим ответ:

$$x = \frac{Lr_1}{r} = L \cdot \frac{UU_0 - I_0U'(r + R_n)}{(UI'_0 - U'I_0)} \cdot \frac{I_0}{U_0 - U} = \frac{U_0(U - U')I_0L}{(UI'_0 - U'I_0)(U_0 - U)}.$$
 (7)

Ответ: расстояние задается формулой (7).

Задача 3. II вариант.

Обозначим установившуюся температуру $t_0 + \Delta t$. Разберемся, какова будет вместимость стакана при этой температуре.

Рассмотрим оловянный стакан при температуре t_0 ; он вмещает объем V_0 . Представим себе, что стакан до краев заполнен оловом. При нагревании олово в стакане будет расширяться синхронно с материалом стакана. Очевидно, при этом олово в любой момент будет аккуратно помещаться в стакан. Это естественно, ведь стакан вместе с оловянным содержимыми будет сохранять форму, как целый кусок свинца при расширении. Значит, полость в оловянном стакане расширяется также, как если бы состояла из олова. Заметим, что этот факт часто иллюстрируют в школьном курсе физики, демонстрируя, как расширяется отверстие в металлическом кольце, если последнее нагреть.

Итак, при температуре $t_0 + \Delta t$ оловянный стакан вмещает объём воды $V_0(1 + \alpha_O \Delta t)$. Но чему равна масса воды такого объёма при этой же температуре? Для этого надо выяснить, как меняется с температурой плотность воды.

Если при t_0 вода имела плотность ρ_0 , некоторый объём V' и массу $\rho_0 V'$, то после нагревания до температуры $t_0 + \Delta t$ она будет иметь другую плотность ρ' и объем $V'(1 + \alpha_{\rm B} \Delta t)$, но масса ее от нагревания не изменится:

$$\rho_0 V' = \rho' V' (1 + \alpha_{\rm B} \Delta t) \qquad \Rightarrow \qquad \rho' = \frac{\rho_0 V'}{V' (1 + \alpha_{\rm B} \Delta t)} = \frac{\rho_0}{1 + \alpha_{\rm B} \Delta t}.$$

Значит, вода в стакане объёма $V_0(1+\alpha_O\Delta t)$ при температуре $t_0+\Delta t$ будет иметь массу

$$m = \rho' V_0 (1 + \alpha_O \Delta t) = \frac{\rho_0 V_0 (1 + \alpha_O \Delta t)}{1 + \alpha_B \Delta t}.$$

В результате установления теплового равновесия оловянный материал стакана остыл на $\Delta t - (t_0 + \Delta t)$, а вода нагрелась на Δt . Это позволяет записать условие теплового баланса для нашей задачи:

$$C_0(t - t_0 - \Delta t) = cm\Delta t$$
 \Rightarrow $C_0(t - t_0 - \Delta t) = \frac{c\rho_0 V_0(1 + \alpha_O \Delta t)\Delta t}{1 + \alpha_B \Delta t}$.

Преобразуем:

$$(1+\alpha_{\rm B}\Delta t)(t-t_0-\Delta t) = \frac{c\rho_0 V_0}{C_0}(1+\alpha_O \Delta t)\Delta t \qquad \Rightarrow$$

$$t - t_0 - \Delta t + \alpha_{\rm B} \Delta t (t - t_0) - \alpha_{\rm B} \Delta t^2 = z \Delta t + \alpha_O z \Delta t^2, \qquad z \equiv \frac{c \rho_0 V_0}{C_0}.$$

Это квадратное уравнение на Δt : $(\alpha_{\rm B} + z\alpha_{\rm O})\Delta t^2 + \Delta t(1+z-\alpha_{\rm B}(t-t_0)) - (t-t_0) = 0$

$$\Rightarrow \qquad \Delta t = \frac{-(1+z-\alpha_{\rm B}(t-t_0)) \pm \sqrt{(1+z-\alpha_{\rm B}(t-t_0))^2 + 4(\alpha_{\rm B}+z\alpha_O)(t-t_0)}}{2(\alpha_{\rm B}+z\alpha_O)}.$$

Очевидно, нас интересует положительный корень, так как по условию $\Delta t > 0$. <u>Ответ</u>: в стакане установится температура

$$t_0 + \frac{\sqrt{(1+z-\alpha_{\rm B}(t-t_0))^2 + 4(\alpha_{\rm B}+z\alpha_O)(t-t_0)} - (1+z-\alpha_{\rm B}(t-t_0))}{2(\alpha_{\rm B}+z\alpha_O)}, \quad z \equiv \frac{c\rho_0 V_0}{C_0}.$$

Задача 4. II вариант.

Так как трением о лёд можно пренебречь, при перепрыгивании акробата выполняется закон сохранения импульса (ЗСИ) в проекции на горизонтальные оси.

Рассмотрим сначала ЗСИ в проекции на ось x (см. рис. 12) До прыжка импульс в проекции на эту ось был нулевым, так как акробат вместе с диском ехал перпендикулярно оси x. После прыжка диск 3m приобрел проекцию скорости $-u'\sin\alpha$, а скреплённые диски с акробатом — некоторую скорость V_x . Здесь важно понимать, что стержень, параллельный оси x, практически мгновенно уравивает скорости скрепленных дисков в проекции на эту ось, поэтому скорость V_x будут иметь сразу после приземления акробата и сам акробат, и оба скреплённых стержнем диска. Итак, ЗСИ имеет вид

$$x: \quad 0 = 3mV_x - 3mu'\sin\alpha \quad \Rightarrow \quad V_x = u'\sin\alpha.$$

Ситуация в проекции на ось y чуть сложнее. Начальный импульс системы до прыжка был равен 4mu, им обладал акробат m на диске массой 3m. Сразу после прыжка этот диск приобрел y-проекцию импульса, равную $-3mu'\cos\alpha$. Акробат уравнял свою скорость с диском, на котором стоит (за счет силы трения между ногами и диском), но y-компонента скорости скреплённых дисков при этом вовсе не выравняется. Действительно, нет силы, которая уравняла бы эти y-компонеты, ведь стержень легкий и ориентирован в этот момент вдоль оси x, и только вдоль этой оси может действовать на диски.

Поэтому сразу после прыжка только акробат вместе со своим диском имеет некоторую y-компоненту скорости V_y , а скорость диска на втором конце стержня будет иметь лишь x-компоненту. ЗСИ в проекции на ось y будет иметь вид

$$y: 4mu = 2mV_y - 3mu'\cos\alpha \quad \Rightarrow \quad V_y = \frac{4u + 3u'\cos\alpha}{2}.$$

Итак, после приземления акробата он вместе с конструкцией начинает движение со скоростью V_x , при этом он вместе со своим диском обладает ещё и скоростью V_y , которой нет у диска на противоположном конце стержня. Как же будет при этом двигаться конструкция дальше? Вообще говоря, траектория дисков будет достаточно сложной и криволинейной. К счастью, рассмотрев положение центра масс системы, с ней всё-таки можно разобраться.

Центр масс системы скрепленных дисков и акробата расположен в точке О (рис. 12). Так как на систему не действуют внешние силы, этот центр масс будет равномерно двигаться с постоянной ско-

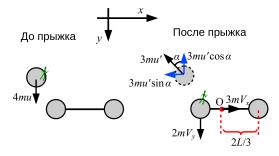


Рис. 12:

ростью. Диски же будут вращаться вокруг этого центра масс. Поэтому, перейдя в систему отсчёта центра масс, мы увидим, что траектории дисков в этой системе – окружности.

Центр масс системы движется с постоянной скоростью: её проекция на ось x равна V_x . Скорость центра масс в проекции на ось y равна отношению y-проекции импульса конструкции $2mV_y$ к массе 3m конструкции, т.е. $2V_y/3$.

Изобразим скорости дисков в исходной системе отсчёта и перейдём в систему отсчета центра масс (см. рис. 13). Для перехода в другую систему отсчёта, как всегда, ко всем скоростиям следует добавить один и тот эксе вектор скорости. В нашем случае добавляем такой вектор, чтобы центр масс в результате перехода к новой системе отсчёта остановился.

Диски будут вращаться вокруг точки O, и стержень будет снова сориентирован параллельно оси x, когда каждый диск пройдёт полокружности, окружность, полторы окружности и т.д... Пусть диски совершили полуцелое число оборотов, то есть повернулись на угол $\pi + 2\pi n$ (n – произвольное целое число). Это произойдет через время

$$V_x$$
 V_x V_x $V_y/3$ $V_y/3$ V_y С.О. земли С.О. центра масс

$$t = \frac{\pi(1+2n)L}{V_y} = \frac{2\pi(1+2n)L}{4u + 3u'\cos\alpha}.$$

Рис. 13:

это время акробат, во-первых, переместится вдоль x на $s_*=2L/3$ за счёт кругового движения вокруг O; во-вторых, он переместится вдоль той же оси на $V_x t$ вместе с центром масс; в третьих, он переместится вдоль оси y на $2V_y t/3$ вместе с центром масс. Суммарно его перемещение составит

$$s_n = \sqrt{(s_* + V_x t)^2 + \left(\frac{2V_y t}{3}\right)^2} = \sqrt{\left(\frac{2L}{3} + u' \sin \alpha \frac{2\pi (1 + 2n)L}{4u + 3u' \cos \alpha}\right)^2 + \frac{4\pi^2 (1 + 2n)^2 L^2}{9}}.$$

В последнем равенстве мы подставили найденные ранее V_x, V_y, s_* и t.

Ну а чтобы стержень повернулся на целое число оборотов, $2\pi n$, должно пройти время $t' = 2\pi n L/V_y$, а s_* будет равно нулю, все же остальные рассуждения окажутся прежними,

поэтому в этом случае суммарно перемещение акробата составит

$$s'_{n} = \sqrt{\left(s_{*} + V_{x}t'\right)^{2} + \left(\frac{2V_{y}t'}{3}\right)^{2}} = \sqrt{\left(u'\sin\alpha\frac{4\pi nL}{4u + 3u'\cos\alpha}\right)^{2} + \frac{16\pi^{2}n^{2}L^{2}}{9}}.$$

<u>Ответ</u>: Стержень много раз будет оказываться параллелен своему первоначальному положению. В эти моменты. перемещение акробата составит s_n и s'_n , где

$$s_n = L\sqrt{\left(\frac{2}{3} + \frac{2\pi(1+2n)u'\sin\alpha}{4u + 3u'\cos\alpha}\right)^2 + \frac{4(1+2n)^2\pi^2}{9}}, \qquad s_n' = L\sqrt{\left(\frac{4\pi nu'\sin\alpha}{4u + 3u'\cos\alpha}\right)^2 + \frac{16\pi^2n^2}{9}},$$

n — произвольное целое число. Когда такое произойдет в первый раз, перемещение акробата составит $s_{n=0}$.

Задача 5. II вариант.

Если доска, погружаясь в жидкость, остаётся вертикальной, то изображение лампочки всегда имеет у-координату, равную нулю. Действительно, чтобы построить изображение лампочки Л, нужно опустить перпендикуляр ЛО от предмета Л на плоскость зеркала и расположению на продолжении ЛО изображение Л' – за зеркалом – так, чтобы ЛО=ОЛ'. Таким образом, в этом случае график выглядит как на рис. 14.

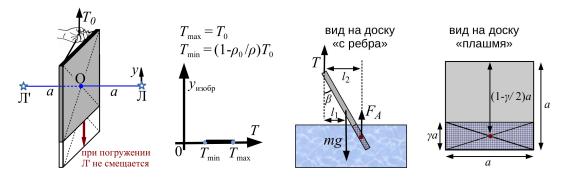


Рис. 14: Рис. 15:

Интуитивно понятно, что достаточно тяжёлая доска (которая тонет в жидкости) будет погружаться вертикально. Но всегда ли так будет? Предположим, что возможно положение равновесия, представленное на рис. 15, когда доска висит, образуя угол β с вертикалью. Обозначим через d толщину доски, а через γ — долю длины доски, погружённую в жидкость (так, что на рис. 15 в жидкости находится площадь доски $\gamma a \cdot a$ и объём $\gamma a^2 d$). Заметим, что T_0 численно равно mg — силе тяжести доски. Тогда T_0 и силу Архимеда погруженной части доски можно связать с геометрическими размерами и плотностями:

$$mg = T_0 = \rho g a^2 d, \qquad F_A = \rho_0 g \gamma a^2 d, \qquad \Rightarrow F_A = \frac{\gamma \rho_0 T_0}{\rho}.$$
 (8)

Если наклонное положение равновесия для доски существует, в нём выполняются два условия: сумма сил, действующих на доску равна нулю $mg=T+F_A$, а также правило рычага. Правило рычага можно записать, например, относительно точки подвеса, $mgl_1=F_Al_2$. При этом нужно учесть, что плечо силы mg равно $l_1=(a/2)\sin\beta$, а плечо силы F_A равно $l_2=a(1-\gamma/2)\sin\beta$ (см. рис. 15). Эти два условия несложно записать в виде системы

Баланс сил:
$$mg = T + F_A$$
 Баланс моментов сил: $T_0 \frac{a \sin \beta}{2} = F_A a \left(1 - \frac{\gamma}{2}\right) \sin \beta$.

Производя сокращение на $a \sin \beta$ в последнем равенстве и подставляя (8), получим

Баланс сил:
$$T_0 = T + \frac{\gamma \rho_0 T_0}{\rho}$$
 Баланс моментов сил: $\frac{T_0}{2} = \frac{\gamma \rho_0 T_0}{\rho} \left(1 - \frac{\gamma}{2}\right)$.

Из баланса сил можно найти $T=T_0(1-\gamma\rho_0/\rho)$. Из баланса моментов найдём γ , решая квадратное уравнение:

$$\frac{1}{2} = \frac{\gamma \rho_0}{\rho} \left(1 - \frac{\gamma}{2} \right) \quad \Rightarrow \quad \frac{\rho}{\rho_0} = \gamma (2 - \gamma) \quad \Rightarrow \quad \gamma^2 - 2\gamma + \frac{\rho}{\rho_0} = 0. \quad \Rightarrow \quad \gamma = 1 \pm \sqrt{1 - \frac{\rho}{\rho_0}}.$$

Теперь мы видим, что такое решение существует (выражение под корнем не отрицательно) только в случае, если $\rho < \rho_0$, т.е. если доска может плавать в жидкости. Поскольку γ – доля погруженной части доски, должно выполняться неравенство $0 \le \gamma \le 1$. Поэтому физический корень – только с минусом перед корнем, $\gamma = \gamma_{kp} = 1 - \sqrt{1 - \rho/\rho_0}$. Обратите внимание, γ_{kp} фиксировано при заданных плотностях доски и жидкости.

Итак, если $\rho < \rho_0$, при вертикальном опускании точки подвеса происходит следующее. Сначала, пока доля погруженной части доски меньше γ_{kp} , доска висит вертикально. Изображение \mathcal{I}' при этом неподвижно. Затем мы продолжаем опускать точку подвеса вниз, но γ перестает меняться, а вместе с ним и сила Архимеда, и сила натяжения T (см. рис. 16). Изображение при этом постепенно смещается. Чем ниже опускается точка подвеса, тем сильнее отклоняется доска, «стараясь» сохранить объём погруженной части. В некото-

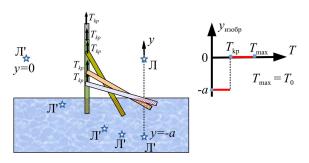


Рис. 16:

рый момент договоренность о том, что толщиной доски можно пренебречь, становится неверной — когда β начинает отличаться от $\pi/2$ так мало, что погруженную часть нельзя считать параллелепипедом. С этого момента величина T начнёт уменьшаться, и в конце концов достигнет нуля; доска станет свободно плавать.

Получается, что положение Π' меняется только пока доска поворачивается и меняется угол β . При этом постоянна величина $\gamma = \gamma_{kp}$ и не меняется сила $T = T_{kp} = T_0(1 - \gamma_{kp}\rho_0/\rho)$. Когда доска уже практически горизонтальна (при $\beta \simeq \pi/2$) T снова начнет меняться, но y-координата Π' остается равной -a. Поэтому требуемый график представлен на рис. 16 справа.

Заметим, что досткамогла отклоняться от вертикали и в другую сторону. Однако, это влияет на положение изображения лишь при $T=T_{kp}$. Поэтому и в этом случае график остается ступенькой, представленной на рис. 16.

<u>Ответ</u>: при $\rho \ge \rho_0$ *у*-координата изображения не меняется и равна нулю, график представлен на рис. 14. При $\rho < \rho_0$ график представлен на рис. 16, он имеет вид ступеньки. Значению T_{kp} соответствует целый набор значений координаты изображения,

$$T_{kp} = T_0 (1 - \gamma_{kp} \rho_0 / \rho),$$
 где $\gamma_{kp} = 1 - \sqrt{1 - \rho / \rho_0}.$