Решения задач 9 класса

Задача 1. Летнее путешествие

Во время летних каникул Коля с друзьями решил отправиться в небольшое путешествие на плоту. От этой же пристани, одновременно с ними, на моторной лодке вниз по реке отправился старший брат Коли в поселок Ягодное, который находился на расстоянии $S_1 = 30$ км от пристани. Моторная лодка дошла до поселка за 1 час и, повернув обратно, встретила ребят на плоту на расстоянии $S_2 = 22$ км от поселка. Какова скорость течения реки, по которой ребята отправились в путешествие?

Решение:

В качестве системы отсчета лучше выбрать плот (воду). В этой системе отчёта лодка движется вниз и вверх по реке с одинаковой скоростью. Тогда время удаления лодки от плота равно времени приближения к нему, т.е. лодка возвращалась к плоту 1 час. За прошедшие 2 часа плот прошел расстояние $S_1 - S_2 = 8$ км. Получаем, что скорость течения реки $\upsilon = 4$ км/ч.

Ответ: v = 4 км/ч.

Критерии оценивания (10 баллов)	
(Если система отсчёта плот (вода))	
В качестве системы отсчета выбран плот (воду)	4
Получено равенство времени удаления от плота и приближения лодки к плоту	4
Получено окончательное выражение для скорости и правильный ответ	2
(Если система отсчёта Земля)	
Составлена система уравнений с двумя неизвестными	4
Получено уравнение с одним неизвестным	4
Получено окончательное выражение для скорости и правильный ответ	2

Задача 2. Работа на ферме

Во время летних каникул Коля помогал отцу на ферме. С помощью неподвижного блока, через который была перекинута легкая нить, к концу которой прикреплялись грузы, он поднимал их с земли на какую-то высоту (Рис.1). В первый день он поднял с помощью такого блока груз массой m=9 кг на высоту $H_1=4$ м и сделал это за время $t_1=6$ с, причем тянул он веревку с постоянной силой F. На следующий день ему нужно было поднять груз такой же массы и за то же время, но на высоту $H_2=6$ м. На какую величину ему нужно было увеличить силу F?

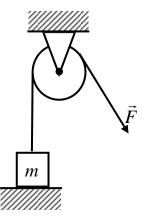


Рис. 1

Решение:

На груз действуют две силы: сила тяжести mg и сила натяжения, равная F . Под действием этих сил груз движется равноускоренно с ускорением:

$$a_1 = \frac{\left(F - mg\right)}{m}.$$

С другой стороны, при равноускоренном движении пройденный путь :

$$H_1 = \frac{{a_1 t}^2}{2}$$
, откуда $a_1 = \frac{2H_1}{t^2}$.

Получаем:

$$\frac{2H_1}{t^2} = \frac{(F - mg)}{m} .$$

Во втором случае сила натяжения веревки равна $F + \Delta F$, а ускорение:

$$a_2 = \frac{2H_2}{t^2} = \frac{\left(F + \Delta F - mg\right)}{m}.$$

Вычитая a_1 из a_2 получаем:

$$\frac{2(H_2 - H_1)}{t^2} = \frac{\Delta F}{m}.$$

Откуда:

$$\Delta F = \frac{2m(H_2 - H_1)}{t^2} = 1 \text{ H}.$$

Ответ: Силу нужно увеличить на 1H.

Получен второй закон Ньютона для первого и второго случая	2
Получены выражения для ускорений тел через высоты H_1 и H_2	
Получено окончательное выражение для ΔF и правильный ответ	

Задача 3. Чаепитие

В небольшой чайник доверху налита теплая вода объёмом V = 0,3 л, температура которой $t_1 = 30$ °C. Чайник остывает на 1 °C за время $\tau = 5$ мин. Для того, чтобы чайник не остыл, в него капают подогретую воду с температурой $t_2 = 45$ °C. Масса одной капли $m_{\kappa} = 0,2$ г. Сколько капель в минуту нужно капать в чайник, чтобы температура поддерживалась равной 30°C? Теплоёмкостью чайника пренебречь. Считать, что температура воды в чайнике выравнивается быстро, а лишняя вода выливается из носика.

Решение:

За одну минуту чайник остывает на $\Delta t_1 = 0.2^{\circ}$ С. Количество тепла, «теряемое» чайником за это время, равно:

$$\Delta Q_1 = cm\Delta t_1, \qquad (1)$$

где c – удельная теплоемкость воды .

Если в минуту в чайник капают n капель, то количество тепла, передаваемое ими воде в чайнике, равно

$$\Delta Q_2 = n \ cm_{\kappa}(t_2 - t_1) \tag{2}$$

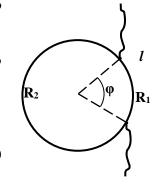
Условие постоянства температуры воды в чайнике $\Delta Q_1 = \Delta Q_2$, т.е.

$$cm\Delta t_1 = n \ cm_{\kappa}(t_2 - t_1) \tag{3}$$

Отсюда находим

$$n = \frac{\rho V \Delta t_1}{m_k (t_2 - t_1)} =$$
 20 капель в минуту. ($\rho = 1 \text{ г/см}^3$)

Ответ: 20 капель в минуту.


Получено выражение (1)	2
Получено выражение (2)	
Получено выражение (3)	
Получено окончательное выпажение лля и правильный ответ	2

Однородную проволоку с сопротивлением R = 20 Ом свернули в кольцо и спаяли. Определите угол, отсчитываемый из центра кольца между точками, к которым нужно подсоединить источник напряжения, чтобы сопротивление кольца было R' = 2 Ом.

Решение:

Обозначим R_1 и R_2 — сопротивления соответственно меньшего и большего участков кольца.

Из законов параллельного и последовательного соединений имеем систему

$$\begin{cases} R = R_1 + R_2 \\ R' = \frac{R_1 \cdot R_2}{R_1 + R_2} \end{cases}$$
 (1)

Выразив из первого уравнения $R_2 = R - R_1$ и подставив во второе, получим квадратное уравнение:

$$R_1^2 - RR_1 + R'R = 0$$
 или $R_1^2 - 20R_1 + 40 = 0$,

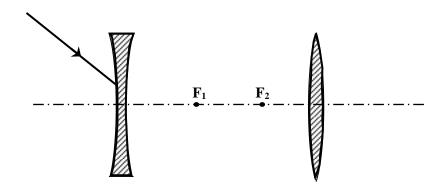
решив которое, получаем: $R_1 = 2,25$ Ом; $R_2 = 17,75$ Ом.

Так как проволока однородная, то:

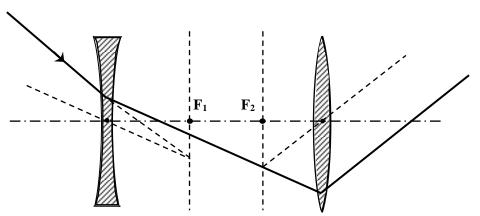
$$R = \rho \frac{L}{S}; \ R_1 = \rho \frac{l}{S}, \tag{2}$$

где $L = 2\pi r$ – длина всей проволоки, l – длина меньшего участка кольца, откуда:

$$l = \frac{2\pi r}{R} R_1. \tag{3}$$


Окончательно
$$\varphi = \frac{l}{r} = \frac{R_1}{R} \cdot 2\pi = 0,707 \ pad = 40,6^{\circ} \approx 41^{\circ}.$$

Ответ: 41⁰ (или 319⁰).


Получена система (1)	2	
Найдены сопротивления участков		
Получено выражение (3)		
Получено окончательное выражение для угла и правильный ответ		

Задача 5 Система линз

Оптическая система состоит из собирающей и рассеивающей линз. На рассеивающую линзу падает луч (см. рис). Найдите построением последующее направление распространения луча через оптическую систему и кратко объясните ход построения.

Решение:

Учащийся кратко объясняет ход построения.

Использованы понятия фокальных плоскостей и они изображены в построениях.	2
Использованы дополнительные лучи, проходящие через оптические центры линз	
Построен ход луча в рассеивающей линзе	2
Построен ход луча в собирающей линзе	
Сделаны правильные краткие пояснения	
- TII	