Муниципальный этап всероссийской олимпиады школьников по физике 2019/20 учебный год 9 класс

Возможные решения и критерии оценивания

Задача 1

Однажды Карлсон, будучи в гостях у Малыша, нашёл на кухне доверху заполненную вишнёвым вареньем банку вместимостью $V_0=500$ мл. Пока Малыша не было на кухне, Карлсон съел половину объёма варенья и, чтобы замести следы, налил в банку доверху вишнёвый кисель плотностью $\rho_1=1200~{\rm kr/m}^3$ и тщательно перемешал содержимое. На следующий день Карлсон снова оказался на кухне у Малыша, съел 2/3 содержимого банки, опять налил доверху кисель и тщательно перемешал содержимое. На третий день Карлсон съел 3/4 содержимого банки и вновь налил доверху кисель. Вечером четвёртого дня, когда мама Малыша открыла банку, оказалось, что средняя плотность содержимого была равна $\rho_{\rm срел}=1225~{\rm kr/m}^3$.

Определите.

- 1) Чему равна плотность ρ_0 вишневого варенья? Ответ выразите в кг/м 3 и округлите до целого числа.
- 2) Какую массу варенья (суммарно в чистом виде и в составе смеси) съел Карлсон за три дня? Ответ выразите в граммах, округлив его до десятых долей.
- 3) Какую массу киселя выпил Карлсон за эти дни? Ответ выразите в граммах, округлив его до целого числа.

Возможное решение

Запишем выражение для конечной средней плотности:

$$\begin{split} \rho_{\text{сред}} &= \frac{\frac{1}{4} \left(\frac{1}{3} \left(\frac{1}{2} \rho_0 V_0 + \frac{1}{2} \rho_1 V_0 \right) + \frac{2}{3} \rho_1 V_0 \right) + \frac{3}{4} \rho_1 V_0}{V_0} = \frac{1}{24} \rho_0 + \frac{23}{24} \rho_1\text{,} \\ \text{откуда } \rho_0 &= 24 \rho_{\text{сред}} - 23 \rho_1 = 1800 \text{ KF/}_{\text{M}}\text{3}. \end{split}$$

Из предыдущего уравнения заметим, что в банке осталось $\frac{1}{24}$ начальной массы варенья, значит $\frac{23}{24}$ массы было съедено. Итого $m_{\rm Bap}=\frac{23}{24}\rho_0 V_0=862,5$ г.

Для нахождения массы выпитого киселя найдём массы залитого и оставшегося в банке киселя:

$$m_{ ext{зал}} =
ho_1 \left(rac{1}{2} V_0 + rac{2}{3} V_0 + rac{3}{4} V_0
ight) = rac{23}{12}
ho_1 V_0.$$
 $m_{ ext{ост}} = rac{23}{24}
ho_1 V_0.$ $m_{ ext{съед}} = m_{ ext{зал}} - m_{ ext{ост}} = rac{23}{24}
ho_1 V_0 = 575 \; ext{г.}$

Ответ: 1) 1800 кг/м^3 (4 балла); 2) 862.5 г (3 балла); 3) 575 г (3 балла).

Критерии оценивания

Задача 2

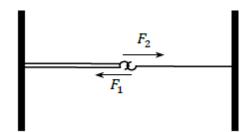
С края плоской крыши дома без начальной скорости падает сосулька. На высоте $h=15\,$ м над землёй мгновенная скорость сосульки была равна её средней скорости за всё время падения. Сопротивлением воздуха можно пренебречь. Ускорение свободного падения считайте равным $g=10\,$ м/с 2 .

- 1) Определите высоту дома. Ответ выразите в метрах и округлите до целого числа.
- 2) Найдите всё время движения сосульки от крыши до земли. Ответ выразите в секундах и округлите до целого числа.

Возможное решение

При равноускоренном движении средняя скорость за всё время движения равна мгновенной скорости на «середине» временного интервала движения. Значит, от края крыши до высоты h и с высоты h до земли сосулька движется одинаковое время. Так как это равноускоренное движение без начальной скорости, следовательно, за равные промежутки времени сосулька проходит расстояния, кратные нечётным числам (S1:S2:S3:...=1:3:5:...).

Тогда расстояние, которое пролетела сосулька с крыши до высоты h, равно h/3=5 м. Высота дома равна H=(4/3)h=20 метров. Время падения сосульки от края крыши до земли равно:


$$t = \sqrt{\frac{2H}{g}} = 2 \text{ c.}$$

Ответ: 1) 20 м (7 баллов); 2) 2 с (3 балла).

Критерии оценивания

Полное верное решение
Верное решение. Имеются небольшие недочёты, в целом не влияющие на
решение
Решение в целом верное, однако содержит существенные ошибки (не
физические, а математические)6-8 баллов
Найдено решение одного из двух возможных случаев 5 баллов
Есть понимание физики явления, но не найдено одно из необходимых для
решения уравнений, в результате чего полученная система уравнений не
полна и невозможно найти решение
Есть отдельные уравнения, относящиеся к сути задачи при отсутствии
решения (или при ошибочном решении)
Решение неверное или отсутствует

Задача 3

У физика в лаборатории были три одинаковых лёгких упругих шнура, для сил растяжения которых был справедлив закон Гука. Физик прикрепил левые концы двух шнуров к одной точке на стене лаборатории (см. рисунок), а свободные концы этих шнуров привязал к небольшому крючку. Правый конец оставшегося шнура он прикрепил к противоположной стене лаборатории, а к оставшемуся свободным концу также привязал небольшой крючок. При этом все шнуры были ненатянутыми, а точки их крепления к стенам находились на одной горизонтальной прямой. Для того чтобы сцепить крючки, одинарный шнур пришлось растянуть за крючок с силой $F_1 = 100$ H, а двойной шнур — с силой $F_2 = 70$ H. В результате этого крючки коснулись друг друга. Сцепив крючки, их отпустили, предоставив шнуры самим себе.

- 1) Чему равно отношение деформаций одинарного и двойного шнуров в конечном равновесном состоянии? Ответ округлите до целого числа.
- 2) Найдите модуль силы натяжения одинарного шнура после того, как система придёт в конечное равновесное состояние. Ответ выразите в Н и округлите до целого числа.

Возможное решение

Из закона Гука и условия равновесия одинарного и двойного шнуров имеем в начальной ситуации:

$$F_1 = kx_1, \quad F_2 = 2kx_2,$$

где k — жёсткость одного шнура, x_1 и x_2 — растяжения одинарного и двойного шнура.

Условие равновесия шнуров в конечном состоянии: $2T_2 = T_1$, где T_2 — сила натяжения одного шнура в двойном шнуре, а T_1 — искомая сила натяжения одинарного шнура.

Отсюда, с учётом закона Гука,

$$2kx_2' = kx_1',$$

и для конечных растяжений: $2x_2' = x_1'$. Поэтому отношение деформаций одинарного и двойного шнуров в конечном равновесном состоянии равно:

$$\frac{x_1'}{x_2'} = 2.$$

Так как расстояние между стенами неизменно, то сумма растяжений шнуров в момент сцепления крючков и в конечном состоянии одинакова:

$$x_2' + x_1' = x_1 + x_2.$$

Поскольку $T_1=kx_1', \quad x_2'=x_1'/2, \quad x_1=F_1/k$ и $x_2=F_2/(2k),$ то $T_1=(2F_1+F_2)/3=90$ H.

Ответ: 1) $\frac{x_1'}{x_2'} = 2$ (4 балла); 2) $T_1 = 90$ H (6 баллов).

Критерии оценивания

Полное верное решение	.10 баллов
Верное решение. Имеются небольшие недочёты, в целом не влияю	щие на
решение	9 баллов
Решение в целом верное, однако содержит существенные ошибки (не
физические, а математические)	6-8 баллов
Найдено решение одного из двух возможных случаев	5 баллов
Есть понимание физики явления, но не найдено одно из необходим	ых для
решения уравнений, в результате чего полученная система уравнен	ий не
полна и невозможно найти решение	.3-4 балла
Есть отдельные уравнения, относящиеся к сути задачи при отсутс	ствии
решения (или при ошибочном решении)	2 балла
Решение неверное или отсутствует	0 баллов

Задача 4

Электрический нагреватель находится внутри бака с водой. Общая масса воды и бака равна 30 кг. При включении на время $\tau_1 = 30$ минут нагревателя мощностью 1 кВт температура воды в идеально теплоизолированном баке поднялась от 17 °C до 37 °C. Тепловую изоляцию сняли, а мощность нагревателя уменьшили до 0,9 кВт, из-за чего температура воды в баке за время $\tau_2 = 20$ минут выросла от 37 °C до 47 °C.

1) Найдите удельную теплоёмкость системы (теплоизолированного бака с водой). Ответ выразите в Дж/(кг $^{\circ}$ С) и округлите до целого числа.

- 2) Какое количество теплоты было потеряно через стенки бака за время τ_2 ? Ответ выразите в кДж и округлите до целого числа.
- 3) Чему равен КПД устройства после снятия тепловой изоляции? Ответ выразите в процентах и округлите до целого числа.

Возможное решение

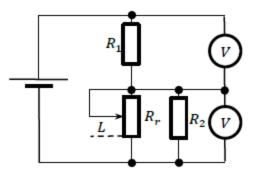
Поступившее от нагревателя количество теплоты при идеальной теплоизоляции идёт на повышение температуры бака и воды. Связь повышения температуры и полученного количества теплоты можно установить через теплоёмкость системы.

При удельной теплоёмкости C бака с водой (общей массой m) уравнение теплового баланса в первом случае даёт:

$$N_1 \tau_1 = Cm(t_1 - t_0) \implies C = \frac{N_1 \tau_1}{m(t_1 - t_0)} = 3000 \frac{\text{Дж}}{\text{Kr} \cdot {}^{\circ}\text{C}}.$$

Во втором случае часть количества теплоты, выделенной нагревателем, идёт на повышение температуры системы, а часть теряется через стенки бака:

$$N_2 au_2 = Cm(t_2 - t_1) + Q \implies Q = 180$$
 қДж.


КПД устройства равен $\eta = Cm(t_2-t_1)/(N_2\tau_2) \approx 0.83$, то есть 83%.

Ответ: 1) 3000 $\frac{\text{Дж}}{\text{кг} \cdot \text{°C}}$ (4 балла); 2) 180 кДж (3 балла); 3) 83% (3 балла).

Критерии оценивания

Полное верное решение	баллов
Верное решение. Имеются небольшие недочёты, в целом не влияющие	на
решение	аллов
Решение в целом верное, однако содержит существенные ошибки (не	
физические, а математические)6-8	баллов
Найдено решение одного из двух возможных случаев5	баллов
Есть понимание физики явления, но не найдено одно из необходимых	для
решения уравнений, в результате чего полученная система уравнений	не
полна и невозможно найти решение3-4	1 балла
Есть отдельные уравнения, относящиеся к сути задачи при отсутствии	
решения (или при ошибочном решении)2	балла
Решение неверное или отсутствует	Баллов

Задача 5

В цепи, схема которой показана на рисунке, соединены идеальная батарея, два резистора с сопротивлениями $R_1 = 10$ Ом и $R_2 = 20$ Ом и реостат. Длина реостата $L_0 = 10$ см, а его максимальное сопротивление $R_r = 80$ Ом. Сопротивление любого участка реостата прямо пропорционально его длине.

- 1) Чему равно общее сопротивление цепи, если ползунок реостата находится в нижнем положении, показанном пунктирной линией (см. рисунок)? Ответ выразите в Ом и округлите до целого числа.
- 2) На какое расстояние L нужно сместить ползунок реостата из нижнего положения для того, чтобы показания идеальных вольтметров были одинаковыми? Ответ выразите в мм и округлите до целого числа.

Возможное решение

Если ползунок реостата находится в нижнем положении, то через реостат и через резистор сопротивлением R_2 ток не течёт, и поэтому общее сопротивление цепи равно $R_1=10$ Ом.

Показания вольтметров будут одинаковыми при условии равенства сопротивлений участков цепи, к которым подключены клеммы приборов:

$$R_1 = \frac{R_2 R_r \cdot \frac{L}{L_0}}{R_2 + R_r \cdot \frac{L}{L_0}} \implies L = \frac{R_1 R_2}{R_r (R_2 - R_1)} L_0 = 2,5 \text{ cm} = 25 \text{ mm}.$$

Ответ: 1) 10 Ом (4 балла); 2) 25 мм (6 баллов).

Критерии оценивания

Полное верное решение	10 баллов
Верное решение. Имеются небольшие недочёты, в целом не влияю	ощие на
решение	9 баллов
Решение в целом верное, однако содержит существенные ошибки	(не
физические, а математические)	.6-8 баллов
Найдено решение одного из двух возможных случаев	5 баллов

Муниципальный этап всероссийской олимпиады школьников по физике, 9 класс, 2019/20 уч. год Ответы и решения

Есть понимание физики явления, но не найдено одно из необходим	ых для
решения уравнений, в результате чего полученная система уравнен	ий не
полна и невозможно найти решение	.3-4 балла
Есть отдельные уравнения, относящиеся к сути задачи при отсутств	вии
решения (или при ошибочном решении)	2 балла
Решение неверное или отсутствует	0 баллов

Всего за работу 50 баллов