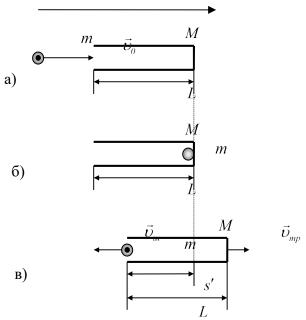

10 КЛАСС

Максимальное количество 50 баллов

Задача 10.1. Шарик в трубке. На гладком горизонтальном столе покоится трубка массой $M = 90 \ \varepsilon$ и длиной $L = 0.5 \ M$, закрытая с одного торца. В открытый конец трубки влетает маленький шарик массой m = 10 г со скоростью, направленной вдоль оси трубки. После абсолютно упругого удара о закрытый торец трубки шарик вылетает наружу. Какой путь Sотносительно стола пройдёт шарик за время, которое он будет находиться внутри трубки? Размером шарика, толщиной стенок трубки и трением пренебречь. (10 баллов)

Возможное решение

Относительно центра масс системы «шарик + трубка» после абсолютно упругого удара и шарик и трубка меняют свои Xскорости на противоположные.


Величина относительной скорости шарика и трубки после абсолютно упругого удара такая же, как и до удара.

Время *t* движения шарика внутри трубки до удара, равно времени t его движения внутри трубки после удара.

Введём обозначения:

 υ_0 – скорость шарика относительно стола до удара (рис. а),

 υ_{mp} и $-\upsilon_{u}$ – скорость трубки и скорость шарика относительно стола после удара соответственно (рис. в),

$$t = \frac{L}{\nu_0}$$
 — время движения шарика внутри трубки в одну сторону,

s' — путь шарика внутри трубки после удара относительно стола (рис. в),

s = L + s' — искомый путь относительно стола, который пройдёт шарик за время 2t, которое он будет находиться внутри трубки (рис. в).

Из законов сохранения импульса и кинетической энергии в системе «шарик + трубка» выразим скорость υ_{m} шарика относительно стола после удара:

$$\begin{cases} m \upsilon_0 = M \upsilon_{mp} - m \upsilon_{u} \\ \frac{m \upsilon_0^2}{2} = \frac{M \upsilon_{mp}^2}{2} + \frac{m \upsilon_{u}^2}{2} \end{cases} \qquad \upsilon_u = \frac{M - m}{m + M} \upsilon_0.$$

Выразим s':

$$s' = v_{uu} t = \frac{M - m}{m + M} v_0 \frac{L}{v_0} = \frac{M - m}{m + M} L.$$

Найдём s:

$$s = L + s' = L + \frac{M - m}{m + M} L = \frac{2M}{m + M} L$$
. $s = 0, 9 \text{ M}$.

Критерии оценивания	Баллы
Указано, что относительные скорости шарика и трубки до и после абсолютно упругого удара такие же, как и до удара	2
Указано, что время t движения шарика внутри трубки до удара, равно времени t его движения внутри трубки после удара	2
Записаны законы сохранения импульса и кинетической энергии	2
Выражена скорость шарика $\upsilon_{\scriptscriptstyle u}$ относительно стола после удара	2
Выражен путь s' шарика внутри трубки после удара относительно стола	1
Найден путь s , который пройдёт шарик относительно стола	1
Итого	10

Задача 10.2. Нерастаявший лёд. В калориметре находилось $m_{el}=400~z$ воды при температуре $t_{el}=5~^{o}C$. К ней долили ещё $m_{e2}=200~z$ воды при температуре $t_{e2}=10~^{o}C$. и положили $m_{_{_{\! H}}}=400~z$ льда при температуре $t_{_{_{\! H}}}=-60~^{o}C$. Какая масса m льда оказалась в калориметре после установления теплового равновесия? Удельные теплоёмкости воды и льда, соответственно, $c_{_{\! H}}=4.2\cdot 10^3~\frac{\mathcal{J}\mathcal{M}}{\kappa z^{_{\! H}}C}$ и $c_{_{\! H}}=2.1\cdot 10^3~\frac{\mathcal{J}\mathcal{M}}{\kappa z^{_{\! H}}C}$, удельная теплота плавления льда $\lambda=3,33\cdot 10^5~\frac{\mathcal{J}\mathcal{M}}{\kappa z}$, температура плавления льда $t_{_{\! H\!M}}=0~^{o}C$. Теплоёмкостью калориметра пренебречь. (10 баллов)

Возможное решение

Решение таких задач необходимо начинать с числовых оценок количеств теплоты, которыми обмениваются различные компоненты системы при установлении теплового равновесия.

Определим вначале количество теплоты Q_I , которое может отдать вода (m_{eI} и m_{e2}) при остывании до температуры $t_{ni}=0$ ^{0}C плавления льда:

$$Q_{l} = c_{s} m_{sl} (t_{sl} - t_{ns}) + c_{s} m_{s2} (t_{s2} - t_{ns}) = c_{s} (m_{s1} t_{s1} + m_{s2} t_{s2}).$$
 $Q_{l} = 16800 \, \text{Дж}.$

Количество теплоты Q_2 , требующееся для нагревания льда до температуры плавления $t_{ns}=0\ ^{0}C$:

$$Q_2 = c_{_{\pi}} m_{_{\pi}} (t_{_{n\pi}} - t_{_{\pi}}) = c_{_{\pi}} m_{_{\pi}} t_{_{\pi}}.$$
 $Q_2 = 50400$ Дж.

Сравнивая эти величины, видим, что теплоты, отдаваемой водой при остывании, недостаточно для нагревания льда до θ ^{o}C :

$$Q_2 > Q_1$$
, $50400 \ \text{Дж} > 16800 \ \text{Дж}$.

То есть, при остывании всей воды до θ ^{o}C , лёд, нагреваясь, не достигает нулевой температуры.

В то же время, количество теплоты Q_3 , которое может отдать вся вода при замерзании:

$$Q_3 = (m_{el} + m_{e2}) \lambda$$
. $Q_3 = 199800$ Дж.

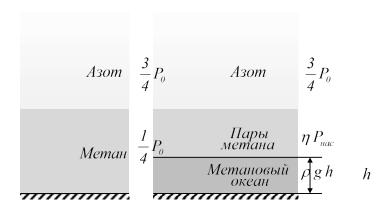
Это количество теплоты явно превышает количество теплоты, требующееся для нагревания льда до температуры плавления.

То есть часть воды замёрзнет. Поэтому, чтобы лёд тоже нагрелся до θ ^{0}C , часть воды $m_{_{36}}$ должна, отдавая тепло при нулевой температуре, превратиться в лёд. Следовательно, при установлении теплового равновесия в калориметре вода остынет до θ ^{0}C и часть $m_{_{36}}$ её замёрзнет, то есть в калориметре образуется смесь воды и льда при нулевой температуре.

Выразим количество теплоты $Q_{_{36}}=m_{_{36}}\,\lambda$, выделяющееся при замерзании части воды $m_{_{36}}$, как разность количества теплоты Q_2 , требующееся для нагревания льда до температуры 0 0C и количества теплоты Q_1 , которое может отдать вода при остывании до 0 0C :

$$Q_{_{36}}=Q_{_2}-Q_{_I}, \qquad m_{_{36}}\,\lambda=Q_{_2}-Q_{_I}, \qquad m_{_{36}}=rac{Q_{_2}-Q_{_I}}{\lambda}, \ m_{_{36}}=102\cdot 10^{-3}~\kappa z\,.$$

Масса m льда, получившаяся в калориметре после установления теплового равновесия:


$$m = m_{_{I}} + m_{_{36}}$$
. $m = 502 \cdot 10^{-3} \text{ Kz}$.

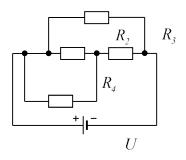
Критерии оценивания	Баллы
Определено количество теплоты $Q_{\scriptscriptstyle I}$, которое может отдать вода при остывании до температуры плавления льда $\theta^{-\theta}C$	2
Определено количество теплоты Q_2 , требующееся для нагревания льда до температуры плавления $\theta^{-\theta}C$	2
Сделан вывод, что замёрзнет только часть воды	2
Выразим количество теплоты $Q_{\scriptscriptstyle 36}$, выделяющееся при замерзании части воды $m_{\scriptscriptstyle 36}$	2
Найдена масса <i>т</i> льда, получившаяся в калориметре после установления теплового равновесия	2
Итого	10

Задача 10.3. Глобальное похолодание. Атмосфера некоторой сферической планеты состоит по массе на $\frac{3}{4}$ из азота и на $\frac{1}{4}$ из метана. Атмосферное давление вблизи поверхности планеты равно $P_0=1.6\cdot 10^5~\Pi a$, ускорение свободного падения $g=1.4~\frac{M}{c^2}$. При глобальном похолодании на планете образовался метановый океан, и у поверхности этого океана давление паров метана стало составлять $\eta=50~\%$ от давления его насыщенных паров. Пренебрегая вращением планеты, найти глубину океана, если плотность жидкого метана равна $\rho=430~\frac{\kappa c}{M^3}$, а давление его насыщенных паров при данной температуре равно $P_{nac}=40~\kappa\Pi a$. Высота атмосферы и глубина океана намного меньше радиуса планеты. (10 баллов)

Возможное решение

Давление P_{θ} на участок поверхности планеты зависит только от веса столба вещества, находящегося над этим участком, причём неважно, в каком состоянии (жидком или газообразном) находится вещество. Поэтому при глобальном похолодании и образовании на планете метанового океана, давление P_{θ} на поверхность планеты останется таким же, как до этих процессов.

Введём обозначения:

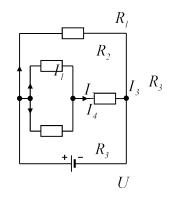

h- искомая глубина метанового океана, $\frac{3}{4}P_0-$ давление азота, $\eta P_{_{\it Hac}}-$ давление паров метана у поверхности метанового океана, $\rho g h-$ давление на дне метанового океана.

Атмосферное давление P_{θ} вблизи поверхности сферической планеты и в отсутствие океана, и при его наличии определяется полной массой, вещества, действующего на поверхность планеты поэтому давление P_{θ} на поверхность планеты равно сумме давлений азота, паров метана, и метанового океана:

$$P_0 = \frac{3}{4} P_0 + \eta P_{\text{\tiny Hac}} + \rho g h, \qquad h = \frac{\frac{1}{4} P_0 - \eta P_{\text{\tiny Hac}}}{\rho g}. \qquad h = 33,22 \text{ M}.$$

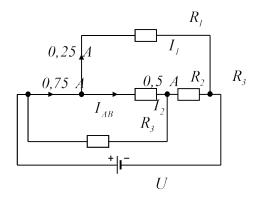
Критерии оценивания	Баллы
Есть рассуждение о том, что давлении на участок поверхности планеты зависит только от веса столба вещества, находящегося над этим участком	2
Выражено давление азота	2
Выражено давление паров метана у поверхности метанового океана,	3
Выражено давление на дне метанового океана	1
Найдена глубина океана	2
Итого	10

Задача 10.4. Сила тока в проводнике. В показанной на рисунке цепи напряжение источника U=25~B .Какова сила тока в проводнике АВ, если $R_{_{I}}=100~Om$, $R_{_{2}}=R_{_{4}}=40~Om$, $R_{_{3}}=5~Om$? Сопротивлением проводов пренебречь. (10 баллов)


Возможное решение

Напряжение на проводе равно нулю поэтому воспользоваться законом Ома не удастся, (пришлось бы делить ноль на ноль).

Используем эквивалентную схему (рис. а), и найдём $I_{\scriptscriptstyle I}$, и $I_{\scriptscriptstyle 2}$.


Для этого найдём R_{234} :

$$R_{234} = R_{24} + R_3 = \frac{1}{\frac{1}{R_2} + \frac{1}{R_4}} + R_3. \qquad R_{234} = 25 \text{ Om}.$$

Найдём I_1 , и I_2 :

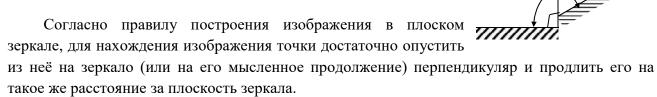
$$I_{1} = \frac{U}{R_{1}}$$
. $I_{1} = 0.25 A$. $I_{3} = \frac{U}{R_{234}}$. $I_{3} = 1 A$. $I_{2} = I_{4} = \frac{I_{3}}{2}$. $I_{2} = 0.5 A$.

Теперь можно вернуться к исходной схеме (рис. б). В точку В «втекает» искомый ток I_{AB} , а «вытекают» I_1 и I_2 .

из неё токи

Найдём I_{AB} :

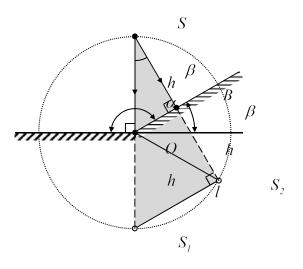
$$I_{AB} = I_1 + I_2$$
. $I_{AB} = 0.25 \ A + 0.5 \ A = 0.75 \ A$.


(Можно решить задачу рассматривая точку А)

Критерии оценивания	Баллы
Использована эквивалентная схема	2
Найдена сила тока $I_{_I}$ в проводнике $R_{_I}$	2
Найдена сила тока I_2 в проводнике R_4	3
Применено правило Кирхгофа для узлов	2
Найдена сила тока в проводнике АВ	1
Итого	10

Задача 10.5. Два зеркала. Два плоских зеркала образуют двугранный угол $\alpha = 150^{\circ}$. Точечный источник света S расположен на перпендикуляре к одному из зеркал, восстановленном в точке O, на расстоянии h = 10 c_M от зеркала, как показано на рисунке. Выполнить построение изображений S_l и S_2 . Каково расстояние l между изображениями S_l и S_2 источника в зеркалах? (10 баллов)

Возможное решение


Изображение светящейся точки в плоском зеркале является мнимым и расположено симметрично относительно его отражающей поверхности.

Если зеркал несколько, изображения светящейся точки в каждом из них строятся аналогично.

На рисунке представлены изображения S_I и S_I источника S в зеркалах 1 и 2 соответственно, расположение которых задано в условии задачи.

Из равенства треугольников ΔOSB и ΔOS_2B следует, что точки S, S_I и S_I лежат на одной окружности радиусом h и с центром в точке O. Следовательно, $\angle SS_2S_I = \frac{\pi}{2}$, как вписанный в окружность угол опирающийся на диметр 2h.

Из прямоугольного треугольника $\Delta SS_{I}S_{2}$, учитывая, что: $\beta=\pi-\alpha$, найдём искомое расстояние β :

$$l = 2h\sin\beta = 2h\sin(\pi - \alpha)$$
. $l = 10^{-2} \text{ m}$.

Критерии оценивания	Баллы
Выполнено построение изображения S_I	2
Выполнено построение изображения S_I	2
Выражен (или найден) найден угол β	2
Доказано, что треугольник $\Delta SS_{I}S_{2}$ прямоугольный	2
Найдено расстояние β между изображениями источника в зеркалах	2
Итого	10