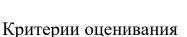

11 класс Задача 1

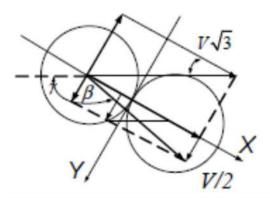
Два одинаковых гладких упругих шарика A и В движутся во встречных направлениях со скоростями v и 2v, причем прямые, проходящие через центры каждого из шариков в направлении их движения, касаются другого шарика. Найдите, под каким углом к первоначальном направлению будет двигаться шарик A после соударения.

Решение:

Проведем ось X через центры шаров, а ось Y — через точку их соприкосновения по касательной к шарам. Из-за гладкости шаров у-составляющая их импульсов, а, следовательно, и скоростей шаров не изменяется после удара. Поэтому

$$v_{yA} = v_{0yA} = v \sin 30^\circ = \frac{v}{2}$$
.

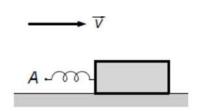

Из законов сохранения импульса и энергии можно показать, что после удара шары обмениваются х-составляющими скоростей:


$$v_{xA} = v_{0xB} = 2v\cos 30^{\circ} = v\sqrt{3}$$
.

Отсюда находим искомый угол:

$$\gamma = \pi / 3 + \beta$$
,

где
$$tg\beta=rac{v_{xA}}{v_{yA}}=2\sqrt{3}$$
 . Следовательно
$$\gamma=\pi/3+arctg2\sqrt{3}\;.$$



Правильно выбрана система координат	3 балла
Записаны законы сохранения энергии и импульса и установлена	4 балла
связь между составляющими скоростей до и после удара	
Найдено искомое значение угла	3 балла

Задача 2

На гладком столе лежит грузик и касающаяся его одним концом пружинка. Другой конец пружинки (A) начинают двигать в сторону грузика с постоянной скоростью v. В момент максимального сжатия пружинки конец A останавливают. С какой скоростью будет двигаться грузик после того, как он отлетит от пружинки? Массой пружинки пренебречь.

Решение:

В момент максимального сжатия правый конец пружинки должен иметь такую же скорость, как и грузик, т.е. скорость грузика в момент отрыва равна v. Для определения деформации пружинки в этот момент перейдем систему отсчета, связанную с левым концом пружинки. В этой системе грузик, имея начальную скорость v, сжимает пружинку на Δx и останавливается. Таким образом,

$$\frac{mv^2}{2} = \frac{k\Delta x^2}{2}$$

В неподвижной системе отсчета грузик оторвется от пружины со скоростью v_1 в тот момент, когда она полностью распрямится. Следовательно, из закона сохранения энергии получаем:

$$\frac{mv^2}{2} + \frac{k\Delta x^2}{2} = \frac{mv_1^2}{2}$$
.

В результате имеем:

$$v_1 = \sqrt{2}v$$
.

Критерии оценивания

Записан закон сохранения энергии в системе отсчета, связанной	4 балла
с левым концом пружины	
Записан закон сохранения энергии в неподвижной системе	4 балла
отсчета	
Найдено искомое значение скорости	2 балла

Задача 3

В герметично закрытом сосуде, объем которого равен V_0 = 1,1 л, находятся 100 г кипящей воды и пар при температуре 100 °C. Найти массу пара, если плотность воды равна ρ = 1000 кг/м³, молярная масса воды равна M = 0,018 кг/моль. Считать, что воздуха в сосуде нет.

Решение:

Массу пара определяем из уравнения Менделеева - Клапейрона, считая насыщенный водяной пар идеальным газом. При этом давление насыщенного водяного пара при T = 373 K равно 10^5 Па . Объем пара

$$V = V_0 - \frac{m}{\rho} = 1\Lambda.$$

Отсюда получаем:

$$m = \frac{MpV}{RT} = 0.59e.$$

Критерии оценивания

Указано значение давления насыщенного пара при 100°C	3 балла
Правильно определен объем пара	3 балла
Найдено искомое значение массы пара	4 балла

Задача 4

Внутри гладкой диэлектрической сферы радиуса R находится маленький шарик массой m с зарядом +q. Какой заряд Q нужно поместить в нижней точке сферы для того, чтобы шарик удерживался в устойчивом равновесии в верхней точке сферы. Поляризацией сферы можно пренебречь.

Решение:

Разумеется, что кулоновская сила должна, по крайней мере, уравновешивать силу тяжести, т.е. должно выполняться условие:

$$\frac{kqQ}{4R^2} \ge mg.$$

Однако этого недостаточно. Надо, чтобы шарик находился в положении устойчивого равновесия в верхней точке сферы. Для этого необходимо, чтобы модуль проекции кулоновской силы на направление касательной к окружности превышал модуль проекции силы тяжести на это направление (см. рисунок), т.е.

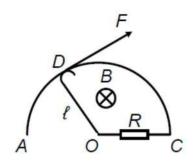
$$F_k \sin \frac{\alpha}{2} \ge mg \sin \alpha$$
.

При малых углах можно считать, что $\sin \frac{\alpha}{2} = \frac{1}{2} \sin \alpha$.

Следовательно, получаем:

$$F_k \ge 2mg$$

Отсюда находим:


$$Q \ge \frac{8mgR^2}{kq} = \frac{32\pi\varepsilon_0 mgR^2}{q} .$$

Критерии оценивания

Указано условие равновесия шарика в верхней точке	3 балла
Получено значение кулоновской силы, уравновешивающей силу	4 балла
тяжести	
Найдено искомое значение заряда	3 балла

Задача 5

Проводник OD может скользить по дуге ADC радиуса l (см. рис.) Перпендикулярно плоскости дуги приложено постоянное однородное магнитное поле, индукция которого равна В. Какую силу надо приложить в точке D перпендикулярно проводнику OD для того, чтобы вращать его с постоянной угловой скоростью ω ? Сопротивление участка OC равно R. Сопротивлением остальных проводников пренебречь.

Решение:

По закону электромагнитной индукции Фарадея определяем ЭДС индукции в проводнике:

$$\left| \mathcal{E} \right| = \frac{\Delta \Phi}{\Delta t} = \frac{B\Delta S}{\Delta t} = \frac{Bl^2 \omega}{2}.$$

Мощность, которую должна развивать сила F, равна

$$P = Fv = F\omega l = \frac{\mathcal{E}^2}{R}.$$

Отсюда получаем:

$$F = \frac{B^2 l^3 \omega}{4R}.$$

Критерии оценивания

Записан закон электромагнитной индукции и найдено значение ε	3 балла
Записано выражение для мощности силы	3 балла
Сделан вывод о равенстве мощностей и найдено искомое	4 балла
значение силы	

Общие критерии оценивания решения, приведенного участником Олимпиады

Баллы	Правильность (ошибочность) решения
10	Полное верное решение

8-9	Верное решение. Имеются небольшие недочеты, в целом не
	влияющие на результат, либо присутствуют ошибки в
	вычислениях, вследствие которых получен неверный численный
	ответ.
5-7	Решение в целом верное, однако, содержит существенные
	ошибки (не только математические, но и физические). Есть
	понимание физики явления, но не найдено одно из необходимых
	для решения уравнений, в результате полученная система
	уравнений не полна и невозможно найти решение.
3-4	Есть решение, содержащее верные формулы, относящиеся к
	сути задачи, но не доведенное до конца, либо решение доведено
	до конца, но вследствие грубых физических ошибок получен
	неверный результат.
1-2	Есть отдельные уравнения, относящиеся к решению задачи, при
	отсутствии решения, либо угадан правильный ответ.
0	Решение совершенно неверное, или отсутствует.