9 класс

Критерии оценивания и возможное решение

1. Восьмиклассник Дима и пятиклассник Сергей решили соревноваться в беге. Дима дал Сергею фору в расстоянии S=300м. За время, за которое Дима пробегает $S_2=125$ м, Сергей пробегает S_1 на 25 м меньше. На каком расстоянии L от места старта Дима догонит Сергея? (10 баллов)

Решение:

 S_1 – расстояние, которое пробегает Сергей за время t_1 ; S_2 – расстояние, которое пробегает Дима за время t_1 .

$$S_1=V_1 t_1 (1)$$

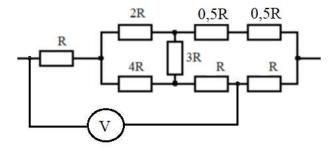
$$S_2=V_2 t_1 (2)$$

С учетом данных задачи $V_1/V_2 = S_1/S_2 = 0.8$.

Пусть t – время, за которое Дима догнал Сергея. Тогда $L=V_2t$,

L-S=
$$V_1t$$
.

$$L/V_2=(L-S)/V_1.(3)$$


Отсюда $L=S/(1-S_2/S_1)$

L=1500м.

Критерии оценивания:

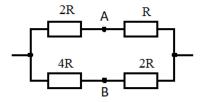
Записана формула 1	1
Записана формула 2	1
Найдено соотношение V ₁ / V ₂	1
Записана формула L= V ₂ t	1
Записана формула L-S= $V_1 t$	1
Получено соотношение (3)	2
Получена формула для L	2
Получен ответ	1
Итого:	10

2. На схеме изображен участок цепи, по которому протекает постоянный ток. Определить показания идеального вольтметра, если R=10 Ом, а напряжение на концах цепи равно 90 В.

Решение:

Рассмотрим верхнюю часть цепи (сопротивления 2R и R), соединенных последовательно.

Найдем падение напряжения на сопротивлении 2R:


$$U_{2R}=I_1 \ 2R=(U/(3R)) \ 2R=2U/3.$$

Аналогично для сопротивления 4R и 2R, соединенных последовательно.

Найдем падение напряжения на сопротивлении 2R:

$$U_{4R}=I_2$$
 4R= (U/(6R)) 4R=2U/3.

Теперь, если эти ветви подключим параллельно, получим схему:

Как было показано выше, потенциалы в точках A и B равны и поэтому ток I_{AB} =0. Раз ток равен нулю, то можно удалить резистор 3R.

Тогда $R_{9KB} = 3R*6R/(3R+6R) = 20$ Ом.

Суммарное сопротивление будет равно 30 Ом.

Найдем ток в цепи: $I_{o6щ} = U/R_{o6щ} = 3$ А.

Ток в нижней ветви равен 1А

Итого напряжение на вольтметре $U_v = 30 + 50 = 80$ В.

Критерии оценивания:

Показано, что потенциалы (напряжения) на концах резистора 3R	2
равны	
Показано, что при равенстве потенциалов на концах резистора	1
3R ток через него равен нулю	
Получено эквивалентная схема без резистора 3R	1
Рассчитано эквивалентное сопротивление верхней ветви	1
Рассчитано эквивалентное сопротивление нижней ветви	1
Рассчитано эквивалентное сопротивление всей цепи	
Рассчитаны токи	1
Рассчитаны падения напряжений	1
Найдены показания вольтметра	1
Итого:	10

3. Под каким углом световой луч падает на плоскую поверхность стекла, если отраженный и преломленный лучи образуют между собой прямой угол? Скорость света в стекле $V=2*10^8$ м/с; скорость света в вакууме $c=3*10^8$ м/с.

Решение:

Пусть α – угол падения луча, γ – угол отражения, β – угол преломления луча в стеклянной пластинке.

$$\alpha = \gamma$$
;

 $\frac{\sin\alpha}{\sin\beta}=n=\frac{c}{V}$, где n – относительный показатель преломления стекла относительно воздуха,.

Так как отраженный и преломленный лучи взаимно перпендикулярны, то $\alpha+90^0+$ $\beta=180^0,$ $\beta=90 \alpha.$

Таким образом sin β =cos α и tg α =c/V=1,5. α =56,3 0 .

При отсутствии непрограммируемого калькулятора возможен ответ в общем виде.

Критерии оценивания:

Записан закон отражения	2
Записан закон преломления	2
Записана формула для относительного показателя преломления	2
стекла относительно воздуха через скорости света в вакууме и в	
стекле	
Получена формула β=90- α	1
Сделан вывод, что $\sin \beta = \cos \alpha$	1
Получена формула tg α=c/V	1
Произведен расчет $\operatorname{tg} \alpha$	1
Итого:	10

4. К кусочку льда подводят количество теплоты Q_1 =42 кДж, при этом он нагревается на Δt =10°C. Если далее к кусочку льда подвести количество теплоты Q_2 =293 кДж, то 40% льда растает. Найдите массу m, начальную t_0 и конечную t температуру льда, если к нему дополнительно подвести количество теплоты Q_3 =450 кДж. Удельная теплоёмкость льда c_n =2100 Дж/(кг*°C), удельная теплота плавления льда λ =340 кДж/кг, удельная теплоемкость воды c_B =4200 Дж/(кг*°C). Потерями тепла пренебречь. (10 баллов)

Решение:

Пусть t_1 – температура льда после первого нагревания; $t_{\text{пл}} = 0^0 \text{C}$ - температура плавления льда.

Уравнение теплового баланса для каждого случая нагревания льда:

$$Q_1 = mc_{\pi}(t_{\pi^-} t_0) = mc_{\pi}\Delta t \quad (1)$$

$$Q_2 = mc_{\pi}(t_{\pi\pi} - t_1) + 0.4m\lambda$$
 (2)

$$Q_3 = 0.6 \text{m} \lambda + \text{mc}_B(\text{t-t}_{\Pi \Pi})$$
 (3)

Из уравнения (1) найдем массу кусочка льда $m = Q_1/(c_n \Delta t)$

m=2 кг.

Сложим уравнения (1) и (2) и получим:

$$Q_1 + Q_2 = -mc_{\pi} t_0 + 0.4m\lambda$$
.

Отсюда
$$t_0=rac{0.4\lambda}{C_\pi}-rac{(Q_1+Q_2)\varDelta t}{Q_1}$$
, $t_0=-15^0$ С

Из уравнения (3) найдем конечную температуру

$$t = \frac{Q_3 - 0.6m\lambda}{mc_{\rm B}} = \frac{Q_3 c_{\rm J} \Delta t}{Q_1 c_{\rm B}} - \frac{0.6\lambda}{c_{\rm B}}$$

 $t = 5^{\circ}C$.

Критерии оценивания:

Записано уравнение 1	1
Записано уравнение 2	1
Записано уравнение 3	1
Получена формула для массы кусочка льда	1
Рассчитана масса кусочка льда	1
Получена формула для начальной температуры	1
Рассчитана начальная температура	1
Получена формула для конечной температуры	1
Рассчитана конечная температура	1
При получении конечных формул произведены математические	1
преобразования	
Итого:	10

5. В вершинах правильного шестиугольника со стороной а находятся 6 черепах. По сигналу они начинают одновременно двигаться с постоянной по модулю скоростью V, каждая в направлении своей соседки по часовой стрелке. Где встретятся черепахи?

Решение:

В силу симметрии задачи черепахи во время движения всё время будут находиться в вершинах правильного шестиугольника, сторона которого будет уменьшаться, пока черепахи не встретятся в центре исходного шестиугольника. Проекция скорости каждой черепахи на направление к центру шестиугольника $V_x = V^* \cos 60^0 = V/2 = \cosh t$.

Таким образом, каждая черепаха приближается к центру шестиугольника с постоянной скоростью V_x и достигнет его через время $t=a/V_x=2a/V$. За это время черепаха пройдет путь S=Vt=2a.

Критерии оценивания:

Сделан вывод:	
в силу симметрии задачи черепахи во время движения всё время	
будут находиться в вершинах правильного шестиугольника,	
сторона которого будет уменьшаться,	
пока черепахи не встретятся в центре исходного шестиугольника	
Определено, что центральный угол правильного шестиугольника	
равен 600	
Определена проекция скорости каждой черепахи	2
$V_x = V^* \cos 60^0 = V/2$	
$V_x = const$	1
Получена формула для времени $t=a/V_x=2a/V$	
Получена формула для пути S=2a	
Итого:	10

В случае авторского решения рекомендуется использовать обобщенные критерии оценивания.

Баллы	Правильность (ошибочность) решения
10	Полное верное решение.
7-9	Верное решение. Имеются небольшие недочеты, в целом не влияющие на решение. Допущены арифметические ошибки.
5–7	Задача решена частично, или даны ответы не на все вопросы.
3–5	Решение содержит пробелы в обоснованиях, приведены не все необходимые для решения уравнения
1–2	Рассмотрены отдельные важные случаи при отсутствии решения (или при ошибочном решении).
0	Решение неверное, продвижения отсутствуют.

0	Решение отсутствует.