Всероссийская олимпиада школьников по физике 2022-2023 уч. год. Муниципальный этап. Калужская область

11 класс. Условия, решения, критерии, методические рекомендации

Задание разработано доцентом кафедры физики и математики КГУ им. К.Э. Циолковского М.С Красиным. В подготовке задания 5 принимали участие А.И. Осипов, Е.А. Осипова (КГУ им. К.Э. Циолковского)

- 1. Газы (10 баллов). Теплоизолированный сосуд разделён на две части тонкой металлической легкоподвижной непроницаемой перегородкой. В одну часть сосуда впускают 3 моля неона при температуре 7°C, а в другой – пять молей молекулярного водорода при температуре 27°C. Какую часть сосуда будет занимать водород после установления теплового равновесия (4 балла)? Какой будет установившаяся температура в сосуде (6 баллов)? Объём сосуда не изменялся.
- 1. Газы. Возможное решение. Поскольку сосуд теплоизолированный (количество теплоты не поступало в систему и не уходило) и его объём не менялся (работа внешних сил равнялась нулю), то суммарная внутренняя энергия газов в сосуде не изменилась. **(1)** Неон инертный газ, значит одноатомный и его внутренняя энергия связана с температурой соотношением $U_1 = \frac{3}{2} \nu_1 R T_1$. (2)

Молекулярный водород является двухатомным газом, поэтому его внутренняя энергия связана с температурой формулой $U_2 = \frac{5}{2} \nu_2 R T_2$. (3)

Согласно закону сохранения энергии
$$\frac{3}{2}\nu_1RT_1 + \frac{5}{2}\nu_2RT_2 = \frac{3}{2}\nu_1RT_y + \frac{5}{2}\nu_2RT_y$$
 (4)

Откуда
$$T_{y} = \frac{3\nu_{1}T_{1} + 5\nu_{2}T_{2}}{3\nu_{1} + 5\nu_{2}}$$
 (5)

Подставив числовые значения в СИ получаем $T_{\rm v} = 288~{\rm K}$ (6)

Поскольку поршень легкоподвижный, то он займёт положение,

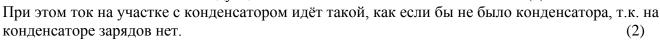
при котором давление газов будет одинаковым. (7)
Из уравнения Менделеева-Клапейрона получаем
$$p = \frac{\nu}{\nu} RT$$
 (8)

Тогда
$$\frac{v_1}{v} = \frac{v_2}{v}$$
 и $\frac{V_2}{v} = \frac{v_2}{v} = \frac{5}{v}$. (9)

Тогда
$$\frac{v_1}{V_1} = \frac{v_2}{V_2}$$
 и $\frac{V_2}{V_1} = \frac{v_2}{v_1} = \frac{5}{3}$. (9)
Водород будет занимать $\frac{5}{8}$ объёма сосуда (10)

1. Газы. Рекомендованные критерии оценки за каждый пункт ставить 1 балл, не снижая оценку за краткость обоснований. E. r

L


C

 R_1

 R_2

(1)

- 2. Переключение (10 баллов). Электрическая схема изображена на рисунке 1. В начальный момент ключ разомкнут, заряд на конденсаторе отсутствует. Какими будут показания амперметра сразу после замыкания ключа (5 баллов) и спустя длительный интервал времени (5 баллов).? Сопротивлением амперметра можно пренебречь. R₁=2 Ом, R₂=8 Ом, R_3 =12 Ом, C=30 мкФ, L=2 Гн, E=9 В, r=0,2 Ом.
- 2. Переключение. Возможное решение. Сразу после замыкания ключа ток через участок с катушкой индуктивности не идёт из-за возникновения явления самоиндукции.

Поэтому сопротивление внешней цепи сразу после замыкания ключа равно

$$R_I = \frac{R_2 R_3}{R_2 + R_3} = 4,8 \text{ Ом.}$$
 (3)

Сила тока через амперметр в этом случае равна
$$I_I = \frac{\varepsilon}{r+R_I} = 1.8 \text{ A}$$
 (4)

Через длительный интервал времени сила тока перестанет изменяться, самоиндукция в катушке не будет возникать, поэтому через участок с катушкой индуктивности ток идёт и сопротивление этого участка равно R₁. (5)

При этом ток на участке с конденсатором не идёт. (6)

Поэтому сопротивление внешней цепи сразу после замыкания ключа равно

$$R_{II} = \frac{R_2 R_1}{R_2 + R_1} = 1,6 \text{ Om.}$$
 (7)

Сила тока через амперметр в этом случае равна
$$I_I = \frac{\varepsilon}{r + R_{II}} = 5 \text{ A}$$
 (8)

- 2. Переключение. Рекомендованные критерии оценки за пункты 1-3 и 5-7 ставить по 1 баллу, за пункты 4 и 8 ставить по 2 балла. Если в пунктах 4 и 8 закон Ома для замкнутой цепи применяется, но с ошибками, то можно ставить по 1 баллу за эти пункты.
- 3. Колебания (10 баллов). Груз массой m=25 г подвесили на нити длиной l=882 мм. Затем груз отклонили так, что угол между нитью и отвесной линией оказался равен $\alpha=3^{\circ}$, и отпустили. Определите период колебаний груза (4 балла). Напишите уравнение движения груза, считая, что сопротивление воздуха при колебаниях груза пренебрежимо мало (2 балла). Определите, через сколько времени после начала движения угол нити с вертикалью составит $\beta = 1^{\circ}$ (2 балла). Во сколько раз ускорение груза в верхней точке траектории больше, чем в нижней (2 балла).
- **3. Колебания.** Возможное решение. Период колебаний груза $T = 2\pi \sqrt{\frac{l}{a}}$ (1)

$$T = 2\pi \sqrt{\frac{0,882\text{M}}{9,8\frac{\text{M}}{c^2}}} = 0,6\pi \text{ c} \approx 1,9 \text{ c}$$
 (2)

Поскольку в начальный момент смещение груза от положения равновесия было максимальным, то уравнение движения удобно записать в виде $x=x_m cos\omega t$

Циклическая частота колебаний равна $\omega = \frac{2\pi}{T}$ $\omega = \frac{2\pi}{0.6\pi} = \frac{10}{3} c^{-1}$

$$x_{m}=l\cdot sin\alpha$$
 $\alpha=3^{\circ}=\frac{\pi}{60}$ рад, $x_{m}=l\cdot sin\frac{\pi}{60}$ $x_{m}=l\cdot \frac{\pi}{60}$, $x=l\frac{\pi}{60}cos\frac{10}{3}t$ (4) Когда угол равен $\beta=1^{\circ}$, координата груза будет равна $x_{\beta}=l\cdot sin\beta=l\cdot \frac{\pi}{180}$

$$l \cdot \frac{\pi}{180} = l \frac{\pi}{60} \cos\left(\frac{10}{3} t_{\beta}\right) \tag{5}$$

$$t_{\beta} = 0.3 \arccos \frac{1}{3} \approx 0.37 \text{ c} \tag{6}$$

$$t_{\beta} = 0.3 \arccos \frac{2}{3} \approx 0.37 \text{ c}$$

$$a_{\rm B} = \omega^2 x_m = \frac{100}{9} l \cdot \frac{\pi}{60} = \frac{5l\pi}{27}$$

$$a_{\rm H} = \frac{v_m^2}{l} = \frac{\omega^2 x_m^2}{l} = \frac{100}{9l} \cdot l^2 \cdot \frac{\pi^2}{3600} = \frac{l}{9} \cdot \frac{\pi^2}{36}$$

$$\frac{a_{\rm B}}{a_{\rm H}} = \frac{5l\pi}{27} \cdot \frac{9.36}{l\pi^2} = \frac{60}{\pi} \approx 19$$

$$(9)$$

$$a_{\rm H} = \frac{v_m^2}{l} = \frac{\omega^2 x_m^2}{l} = \frac{100}{9l} \cdot l^2 \frac{\pi^2}{3600} = \frac{l}{9} \cdot \frac{\pi^2}{36}$$
 (8)

$$\frac{a_{\rm B}}{a_{\rm H}} = \frac{5l\pi}{27} \cdot \frac{9.36}{l\pi^2} = \frac{60}{\pi} \approx 19 \tag{9}$$

- 3. Колебания. Рекомендованные критерии оценки: за пункт 2 ставить 2 балла, за остальные пункты ставить 1 балл. Если уравнение движения записано через синус, но учтена ненулевая начальная фаза, то оценку не снижать
- 4. Теплообмен (10 баллов). В калориметре находится некоторое количество воды при температуре $t_1 = 20$ °C. Когда в воду положили кусочек льда при температуре $t_2 = 0$ °C в состоянии теплового равновесия температура в калориметре стала равна $t_3 = 10$ °C. Какой бы оказалась температура в состоянии теплового равновесия, если бы вместо льда в воду положили мокрый снег при температуре $t_2=0\,{}^{\circ}\mathrm{C}$, такой же массы, как и лёд, но при этом четверть его массы составляла вода? Считать, что удельная теплоёмкость воды $c_B=4200 \frac{\text{Дж}}{\text{кг}^{\circ}\text{C}}$, льда $c_{\text{Л}}=$ $2100 \frac{Дж}{\kappa \Gamma ^{\circ} C}$, удельная теплота плавления льда $\lambda = 340000 \frac{Дж}{\kappa \Gamma}$, удельная теплота парообразования воды $r = 2300000 \frac{\text{дж}}{\text{cm}}$, атмосферное давление p = 756 мм рт ст. Теплоёмкостью калориметра и тепловыми потерями можно пренебречь. Ответ округлить до целых.

4. Теплообмен. Возможное решение. Уравнение теплового баланса в первом случае можно записать в виде $\lambda m_1 + c_B m_1 (t_3 - t_2) = c_B m_2 (t_1 - t_3)$ (1)

Уравнение теплового баланса во втором случае можно записать в виде

$$\lambda \cdot 0.75m_1 + c_B m_1 (t_V - t_2) = c_B m_2 (t_1 - t_V) \tag{2}$$

Если разделить второе уравнение на первое, получаем

$$\frac{\lambda \cdot 0.75 + c_{B}(t_{y} - t_{2})}{\lambda + c_{B}(t_{3} - t_{2})} = \frac{(t_{1} - t_{y})}{(t_{1} - t_{3})}$$

Если подставить числовые данные, то

$$\frac{255000 + 4200t_{y}}{382000} = \frac{20 - t_{y}}{10}$$

$$2550000 + 42000t_{y} = 7640000 - 382000t_{y}$$

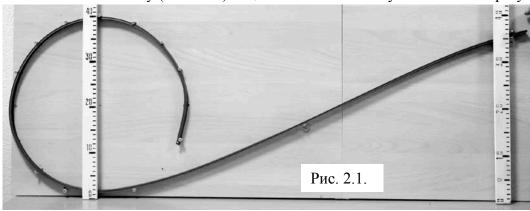
$$t_{y} = 12 \,^{\circ}\text{C}$$
(3)

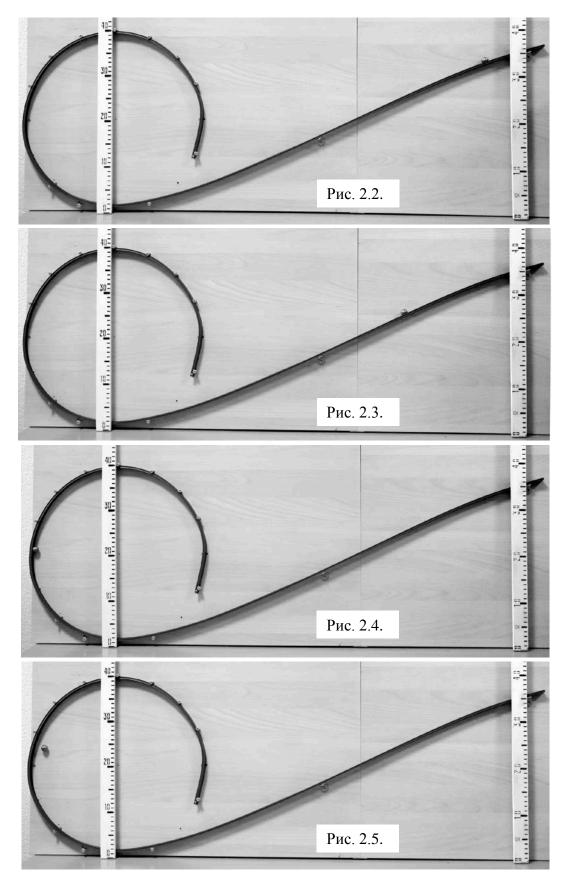
Откуда

4. Теплообмен. *Рекомендованные критерии оценки*. Если есть формула для расчёта количества теплоты, необходимого для нагрева вещества, то добавить 1 балл.

Если есть формула для расчёта количества теплоты, необходимого плавления воды, то добавить 1 балл.

Если в расчётах учтено, что во втором случае масса льда 0,75 от первоначальной, то добавить 1 балл


Если получено соотношение типа (1) то добавить 2 балла


Если получено соотношение типа (2) то добавить 2 балла

Если получено соотношение типа (3) то добавить 2 балла

Если приведён правильный ответ, то добавить 1 балл

5. Петля (10 баллов). Маленький стальной шарик положили на наклонный желоб в нижней части изогнутый в форме окружности. Шарик, скатавшись по желобу вниз, стал подниматься по участку окружности, но не смог сделать полный оборот и оторвался от желоба в некоторой точке. Данный процесс фиксировался фотоаппаратом, успевшим сделать фотоснимок в начальный момент движения шарика (рисунок 2.1.), а также ещё несколько фотоснимков, изображённых (см. рисунки 2.2.–2.4.). Оцените, какая доля энергии была потеряна шариком при скатывании по желобу (6 баллов). Оцените точность полученного Вами результата (4 баллов).

5. Петля. Возможное решение. Закон сохранения энергии для моментов начала и конца движения шарика по желобу можно записать в виде $mgh_0 = mgh + \frac{mv^2}{2} + Q$ (1)

В момент отрыва шарик перестаёт давить на опору и начинает двигаться только под действием силы тяжести (с ускорением g). Но это ещё последнее мгновение движения по окружности радиуса R, поэтому можно записать соотношение $a_{\text{ц.с.}} = \frac{v^2}{R}$.

Из геометрических соображений (см. рис. 2) $a_{\text{ц.с.}} = \mathbf{g} \cdot \cos \alpha$, $\cos \alpha = \frac{h-R}{R}$, $\frac{v^2}{R} = \mathbf{g} \frac{h-R}{R}$. Получаем $v^2 = g(h - R)$.

С учётом (1) $mgh_0 = mgh + 0.5mg(h - R) + Q$, откуда $Q = mg(h_0 - 1.5h + 0.5R)$ $\frac{Q}{mgh_0} = \left(1 - \frac{3h - R}{2h_0}\right)$

Поскольку на фотографии легче измерить диаметр и ошибка при измерении будет в два раза меньше, то удобнее формула

$$\frac{Q}{mgh_0} = \left(1 - \frac{6h - D}{4h_0}\right)$$

По фотографии 2.1. находим, что $h_0 = (36 \pm 1)$ см.

По фотографии 2.4. находим $h=(21\pm 1){
m cm}$, $D=(39\pm 1){
m cm}$

Без учёта погрешностей получаем
$$\frac{Q}{mgh_0} = 0,4$$
 (4)

Для оценки погрешности можно использовать метод «верхней-нижней границы»

$$\begin{split} \mathrm{B}\Gamma\left(\frac{Q}{m\mathrm{g}h_0}\right) &= \left(1 - \frac{6(h - \Delta l) - (D + \Delta l)}{4(h_0 + \Delta l)}\right) = \left(1 - \frac{6h - D - 7\Delta l}{4h_0 + 4\Delta l}\right) = 1 - \frac{6 \cdot 21 - 39 - 7 \cdot 1}{4 \cdot 36 + 4 \cdot 1} \\ &= 1 - \frac{20}{37} = \frac{17}{37} = 0,459459 \dots \end{split}$$

$$\begin{split} \mathrm{H}\Gamma\Big(\frac{Q}{m\mathrm{g}h_0}\Big) &= \left(1 - \frac{6(h+\Delta l) - (D-\Delta l)}{4(h_0 - \Delta l)}\right) = \left(1 - \frac{6h-D+7\Delta l}{4h_0 - 4\Delta l}\right) = = 1 - \frac{6\cdot 21 - 39 + 7\cdot 1}{4\cdot 36 - 4\cdot 1} \\ &= 1 - \frac{47}{70} = \frac{23}{70} = 0.328571 \dots \end{split}$$

$$\Delta \left(\frac{Q}{mgh_0} \right) = 0.5 \left(\frac{17}{37} - \frac{23}{70} \right) = 0.065444 \dots = 0.065$$

(погрешность записана с учётом «правила одной-двух значащих цифр»)

Измеренное значение находим по формуле

$$\frac{Q}{mgh_0} = 0.5\left(\frac{17}{37} + \frac{23}{70}\right) = 0.394015 \dots = 0.394$$

(значение записано с учётом «правила равенства минимальных разрядов в записи измеренного значения и его погрешности»)

Относительная погрешность измерения равна $\varepsilon\left(\frac{Q}{mgh_0}\right) = \frac{0,065}{0.394} = 0,164974 ... = 0,16$

(погрешность записана с учётом «правила одной-двух значащих цифр») Выразив ответ в процентах, получаем $\frac{Q}{mgh_0}=(39.4\pm6.5)$ %, $\varepsilon=16$ %

ОБРАЩАЕМ ВНИМАНИЕ, ЧТО ПРИ УЧАЩИЕСЯ МОГУТ ВЗЯТЬ РЕЗУЛЬТАТЫ, ОТЛИЧАЮЩИЕСЯ ОТ ПРИВЕДЁННЫХ В ОБРАЗЦЕ РЕШЕНИЯ, НА 1-2 см. ИХ НАДО СЧИТАТЬ ПРАВИЛЬНЫМИ, А ИХ ЧИСЛОВЫЕ ВЫЧИСЛЕНИЯ ПЕРЕПРОВЕРИТЬ. МЕТОДЫ ОЦЕНКИ ПОГРЕШНОСТИ МОГУТ БЫТЬ ДРУГИМИ, НО НАДО УЧИТЫВАТЬ ИХ КОРРЕКТНОСТЬ

5. Петля. Рекомендованные критерии оценки. Вывод соотношения (1), добавить 1 балл. Вывод соотношения (2), добавить 2 балла. Вывод соотношения (3), добавить 2 балла. Вычисление (4), добавить 1 балл.

Оценка погрешности каждого результата прямых измерений 1 балл. Корректная оценка абсолютной погрешности добавить 1 балл. Запись результата измерений с учётом погрешности 1 балл. Нахождение относительной погрешности 1 балл.