9 класс

Задача 1

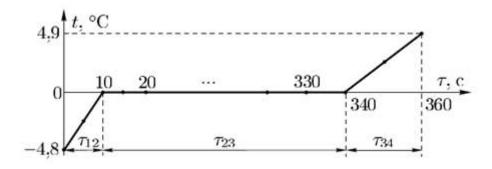
Девятиклассники Миша и Саша ехали на автобусе. Расстояние в 120 км автобус проехал за 2 часа. Его скорость на первом, хорошем участке пути, была на 5 км/час больше средней скорости, а на втором, плохом участке, на 5 км/час меньше средней скорости. Какова длина хорошего участка пути?

Решение:

Средняя скорость автобуса $v = \frac{L}{T} = 60$ км/ч. Его скорость на первом участке $v_1 = v + \Delta v = 65$ км/ч, а на втором $v_2 = v - \Delta v = 55$ км/ч. Пусть на

преодоление первого участка ему потребовалось время t_1 , тогда второй участок он проехал за время t_2 =T- t_1 .

Длина первого участка $L_1=v_1t_1$, длина второго $L_2=v_2t_2$. Поскольку $L=L_1+L_2$, получим $L_1=\frac{v_1(L-v_2T)}{2\Lambda v}=65$ км


Критерии оценивания

Найдена средняя скорость	.1
Найдены скорости на каждом участке	
Записана связь между временем на каждом участке и общим временем	
Получено выражение для длины каждого участка	
Записана связь между длинами участков	.1
Получена формула для времени на первом участке	
Получена формула для длины первого участка	
Получен числовой ответ	

Экспериментатор Глюк исследовал плавление льда. Кусок льда он поместил в калориметр и следил за его нагреванием и плавлением. Результаты измерений Глюк представил в таблице. Изобразите на одном графике изменение температуры льда, а потом воды от времени. На основании экспериментальных данных определите удельные теплоемкости льда и воды. Удельная теплота плавления льда 330 кДж/кг. Теплоемкостью калориметра пренебречь.

Telebrote		
$V_{\sigma} \bigcirc$	$T_{z} \otimes$	
-4.5	Ũ	
2.5	5	
ūΩ	10	
ijψ	15	
a,o	20	
n'n	320	
O.O	330	
Ω_{λ}	340	
25	389	
4,3	2050	

Решение:

Построим график зависимости температуры содержимого калориметра от времени. Подводимая тепловая мощность практически постоянна. Отсюда количество теплоты, затраченное на нагревание льда $N\tau_{12}=c_{\pi}m(t_2-t_1)$

Количество теплоты, затраченное на плавление льда $N\tau_{23}$ = λm

Количество теплоты, необходимое для нагревания воды $N\tau_{34}=c_Bm(t_4-t_3)$

Отсюда выражаем удельные теплоемкости

$$c_{_{
m I\! I}} = rac{\lambda au_{_{12}}}{(t_2 - t_1) au_{_{23}}} = 2$$
,1 $rac{\kappa extstyle \mu_{_{
m I\! I\! I}}}{\kappa au^{\circ} extstyle extstyle C}$ $c_{_{
m I\! I}} = rac{\lambda au_{_{34}}}{(t_4 - t_3) au_{_{23}}} = 4$,2 $rac{\kappa extstyle \mu_{_{
m I\! I\! I}}}{\kappa au^{\circ} extstyle extstyle C}$

Критерии оценивания

Построен график изменения температуры льда и воды от времени	3
Приведено выражение для теплоты, затраченной на нагревание льда	1
Приведено выражение для теплоты, затраченной на плавление льда	1
Приведено выражение для теплоты, затраченной на нагревание воды	1
Получены выражения для удельных теплоемкостей	.2
Найдены численные значения для удельных теплоемкостей	.2

Мальчики на детской площадке бросали вверх мячи. Пришедший за ними папа заметил, что при строго вертикальном броске через некоторое время путь, пройденный мячом, оказался 42,5 м, а перемещение 20 м. С какой скоростью был брошен мяч? Ускорение свободного падения 10м/c^2 .

Решение:

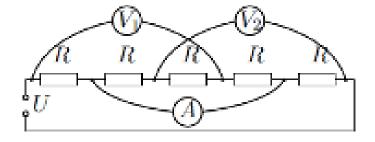
$$S_{1} = \frac{v_{0}^{2}}{2g}, S_{2} = \frac{v^{2}}{2g},$$

$$I = S_{1} + S_{2},$$

$$S = \frac{v^{2} - v_{0}^{2}}{-2g} = \frac{v_{0}^{2} - v^{2}}{2g}$$

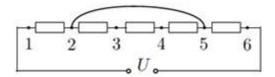
Решая совместно эти уравнения, получим

$$v_0 = \sqrt{g(s+l)}$$


Ответ: 25 м/с.

Критерии оценивания

Сделан пояснительный рисунок	2
Показано соотношение между путем и перемещениями вверх и вниз	
Записаны формулы для перемещений вверх и вниз	
Записана формула для общего перемещения	
Решена система уравнений	


Задача 4

Крош и Нюша собрали электрическую цепь. Пять одинаковых резисторов сопротивлением R=2 Ом они подключили к источнику постоянного напряжения U=10 В. В цепь подключили идеальные вольтметры и идеальный амперметр (см. рисунок). Найти показания приборов.

Решение:

Поскольку приборы идеальные, то для определения напряжений и токов в цепи можно удалить вольтметры и заменить амперметр на соединительный провод. Резисторы между точками 2 и 5 зашунтированы, поэтому ток через них не течет.

При этом сила тока через амперметр и оставшиеся резисторы $I = \frac{U}{2R}$

Поскольку падения напряжения на участке 2-4 не происходит, то напряжение между точками 1 и 4 равно напряжению между точками 1 и 2, то есть U_1 =U/2. Аналогично U_2 =U/2

Ответ: I=2,5 A, $U_1=U_2=5$ В.

Критерии оценивания

Указано, что у идеального амперметра сопротивление равно нулю	.]
Указано, что у идеального вольтметра сопротивление равно бесконечности	
Показано, что амперметр закорачивает три резистора	
Найдена сила тока	
Показано, что напряжения на вольтметрах равны напряжениям на крайних резисторах	
Найдены показания вольтметров	

Задача 5

Теоретик Баг помогал своему другу Глюку проводить эксперименты. Они взяли сосуд с водой и положили туда кусок льда массой 0,5 кг. Система оказалась в тепловом равновесии. Помогите друзьям рассчитать сколько теплой воды при температуре 30°C нужно добавить в сосуд, чтобы объем выступающей части льда уменьшился в 2,4 раза? Удельная теплота плавления льда 330 кДж/кг, удельная теплоемкость воды 4,2 кДж/(кг.°C).

Решение:

Пусть в воде плавает кусок льда массы m, при этом над водой находится часть его объема V. Тогда объем всего льда и его погруженной части соответственно равны $V_0 = \frac{m}{\rho_{\scriptscriptstyle \Pi}}$ и $V_{\scriptscriptstyle \Pi O \Gamma p} = V_0 - V$.

В состоянии равновесия сила Архимеда, действующая на погруженную часть льдинки, уравновешивает силу тяжести:

$$P_{\rm B}V_{\rm погр}\,g=mg$$

Решая совместно эти уравнения, получим $V = \frac{\rho_{\scriptscriptstyle B} - \rho_{\scriptscriptstyle \Pi}}{\rho_{\scriptscriptstyle B} \rho_{\scriptscriptstyle \Pi}} m$

Видно, что уменьшение объема выступающей части в несколько раз соответствует уменьшению массы во столько же раз.

Пусть $m_{\text{в}}$ — масса подлитой воды. Поскольку после установления равновесия в сосуде остался лед, то температура льда и подлитой воды будет 0° С. Из условия теплового баланса:

 $(m_0-m_0/2,4)\lambda = m_B c_B (t-t_0)$

Отсюда

$$m_{\scriptscriptstyle \mathrm{B}} = rac{2.4-1}{2.4} rac{m_0 \lambda}{c_{\scriptscriptstyle \mathrm{B}}(t-t_0)} = 0.76 \; \mathrm{KF}$$

Критерии оценивания

Записано условие равновесия	
•	
Найдено выражение для объема выступающей части льда	
Записано уравнение теплового баланса	,
Найдена масса подлитой воды	