
На закреплённом клине удерживают два кубика, одинаковых по массе и размерам, на расстоянии l=30 см друг от друга (расстояние отсчитывается вдоль склона, см. рисунок). Размеры клина h=5 см, L=50 см. Коэффициент трения нижнего кубика о поверхность клина $\mu=0.4$; верхний кубик гладкий, его коэффициент трения равен нулю. Кубики одновременно отпускают. Все столкновения кубиков друг с другом абсолютно упругие. Ускорение свободного падения g=10 м/с².

Условие:

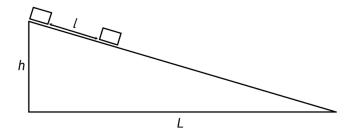
Как будут двигаться кубики непосредственно после первого столкновения?

Варианты ответов:

Верхний отскочит вверх; нижний начнёт двигаться вниз

Верхний остановится; нижний начнёт двигаться вниз

Оба будут двигаться вниз


Оба остановятся

Условие:

Чему будет равна скорость верхнего кубика непосредственно перед первым соударением? Ответ выразите в м/с, округлите до сотых.

Условие:

На закреплённом клине удерживают два кубика, одинаковых по массе и размерам, на расстоянии l=40 см друг от друга (расстояние отсчитывается вдоль склона, см. рисунок). Размеры клина h=10 см, L=100 см. Коэффициент трения нижнего кубика о поверхность клина $\mu=0.3$; верхний кубик гладкий, его коэффициент трения равен нулю. Кубики одновременно отпускают. Все столкновения кубиков друг с другом абсолютно упругие. Ускорение свободного падения g=10 м/с².

Условие:

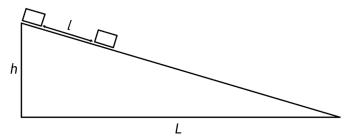
Как будут двигаться кубики непосредственно после первого столкновения?

Варианты ответов:

Верхний отскочит вверх; нижний начнёт двигаться вниз

Верхний остановится; нижний начнёт двигаться вниз

Оба будут двигаться вниз


Оба остановятся

Условие:

Чему будет равна скорость верхнего кубика непосредственно перед первым соударением? Ответ выразите в м/с, округлите до сотых.

Условие:

На закреплённом клине удерживают два кубика, одинаковых по массе и размерам, на расстоянии l=10 см друг от друга (расстояние отсчитывается вдоль склона, см. рисунок). Размеры клина h=15 см, L=75 см. Коэффициент трения нижнего кубика о поверхность клина $\mu=0.5$; верхний кубик гладкий, его коэффициент трения равен нулю. Кубики одновременно отпускают. Все столкновения кубиков друг с другом абсолютно упругие. Ускорение свободного падения g=10 м/с 2 .

Условие:

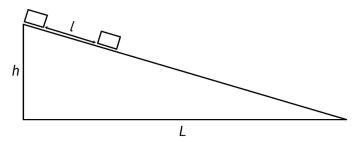
Как будут двигаться кубики непосредственно после первого столкновения?

Варианты ответов:

Верхний отскочит вверх; нижний начнёт двигаться вниз

Верхний остановится; нижний начнёт двигаться вниз

Оба будут двигаться вниз


Оба остановятся

Условие:

Чему будет равна скорость верхнего кубика непосредственно перед первым соударением? Ответ выразите в м/с, округлите до сотых.

Условие:

На закреплённом клине удерживают два кубика, одинаковых по массе и размерам, на расстоянии l=24 см друг от друга (расстояние отсчитывается вдоль склона, см. рисунок). Размеры клина h=8 см, L=80 см. Коэффициент трения нижнего кубика о поверхность клина $\mu=0.35$; верхний кубик гладкий, его коэффициент трения равен нулю. Кубики одновременно отпускают. Все столкновения кубиков друг с другом абсолютно упругие. Ускорение свободного падения g=10 м/с².

Условие:

Как будут двигаться кубики непосредственно после первого столкновения?

Варианты ответов:

Верхний отскочит вверх; нижний начнёт двигаться вниз

Верхний остановится; нижний начнёт двигаться вниз

Оба будут двигаться вниз

Оба остановятся

Условие:

Чему будет равна скорость верхнего кубика непосредственно перед первым соударением? Ответ выразите в м/с, округлите до сотых.

Условие:

Наконечники двух одинаковых шприцов соединили с помощью короткой резиновой трубки. Первоначально объём воздуха в каждом из шприцев составлял V=8 мл, давление внутри системы равнялось атмосферному давлению $P_0 = 100$ кПа. Площадь поперечного сечения шприца составляет $S=3~{\rm cm}^2$. Удерживая корпусы шприцев неподвижными, на поршень шприца №1 начинают давить так, чтобы он начал очень медленно перемещаться с постоянной №2 скоростью. Ha поршень шприца при ЭТОМ никакие дополнительные воздействия не оказываются. В момент времени, когда объём воздуха в шприце №1 составлял $V_1 = 6$ мл, объём воздуха в шприце №2 составлял $V_2 = 9$ мл.

Условие:

Как изменялось положение поршня шприца №2 с момента начала движения поршня №1?

Варианты ответов:

Всё время двигался с постоянной скоростью

Некоторое время оставался неподвижным, затем начал двигаться с переменной скоростью

Сразу пришёл в движение, скорость менялась в процессе движения

Некоторое время оставался неподвижным, затем начал двигаться с постоянной скоростью

Условие:

Чему равнялось давление внутри шприцев в указанный момент времени? Ответ выразите в килопаскалях, округлите до сотых.

Условие:

Наконечники двух одинаковых шприцов соединили с помощью короткой резиновой трубки. Первоначально объём воздуха в каждом из шприцев составлял $V=5\,$ мл, давление внутри системы равнялось атмосферному давлению $P_0 = 100$ кПа. Площадь поперечного сечения шприца составляет $S=2.4~{\rm cm}^2$. Удерживая корпусы шприцев неподвижными, на поршень шприца №1 начинают давить так, чтобы он начал очень медленно перемещаться с постоянной №2 скоростью. Ha поршень шприца при ЭТОМ никакие дополнительные воздействия не оказываются. В момент времени, когда объём воздуха в шприце №1 составлял $V_1 = 3$ мл, объём воздуха в шприце №2 составлял $V_2 = 6$ мл.

Условие:

Как изменялось положение поршня шприца №2 с момента начала движения поршня №1?

Варианты ответов:

Всё время двигался с постоянной скоростью

Некоторое время оставался неподвижным, затем начал двигаться с переменной скоростью

Сразу пришёл в движение, скорость менялась в процессе движения

Некоторое время оставался неподвижным, затем начал двигаться с постоянной скоростью

Условие:

Чему равнялось давление внутри шприцев в указанный момент времени? Ответ выразите в килопаскалях, округлите до сотых.

Условие:

Наконечники двух одинаковых шприцов соединили с помощью короткой резиновой трубки. Первоначально объём воздуха в каждом из шприцев составлял V = 10 мл, давление внутри системы равнялось атмосферному давлению $P_0 = 100$ кПа. Площадь поперечного сечения шприца составляет S = 2.7 см². Удерживая корпусы шприцев неподвижными, на поршень шприца $\mathcal{M}I$ начинают давить так, чтобы он начал очень медленно перемещаться с постоянной *№2* скоростью. Ha поршень шприца при ЭТОМ никакие дополнительные воздействия не оказываются. В момент времени, когда объём воздуха в шприце $\mathcal{N}I$ составлял $V_1 = 7$ мл, объём воздуха в шприце №2 составлял $V_2 = 11$ мл.

Условие:

Как изменялось положение поршня шприца №2 с момента начала движения поршня №1?

Варианты ответов:

Всё время двигался с постоянной скоростью

Некоторое время оставался неподвижным, затем начал двигаться с переменной скоростью

Сразу пришёл в движение, скорость менялась в процессе движения

Некоторое время оставался неподвижным, затем начал двигаться с постоянной скоростью

Условие:

Чему равнялось давление внутри шприцев в указанный момент времени? Ответ выразите в килопаскалях, округлите до сотых.

Условие:

Наконечники двух одинаковых шприцов соединили с помощью короткой резиновой трубки. Первоначально объём воздуха в каждом из шприцев составлял V=8 мл, давление внутри системы равнялось атмосферному давлению $P_0 = 100$ кПа. Площадь поперечного сечения шприца составляет $S=3~{\rm cm}^2$. Удерживая корпусы шприцев неподвижными, на поршень шприца $\mathcal{M}I$ начинают давить так, чтобы он начал очень медленно перемещаться с постоянной *№2* скоростью. Ha поршень шприца при ЭТОМ никакие дополнительные воздействия не оказываются. В момент времени, когда объём воздуха в шприце $\mathcal{N}1$ составлял $V_1 = 5$ мл, объём воздуха в шприце №2 составлял $V_2 = 10.5$ мл.

Условие:

Как изменялось положение поршня шприца №2 с момента начала движения поршня №1?

Варианты ответов:

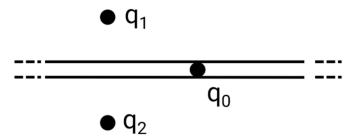
Всё время двигался с постоянной скоростью

Некоторое время оставался неподвижным, затем начал двигаться с переменной скоростью

Сразу пришёл в движение, скорость менялась в процессе движения

Некоторое время оставался неподвижным, затем начал двигаться с постоянной скоростью

Условие:


Чему равнялось давление внутри шприцев в указанный момент времени? Ответ выразите в килопаскалях, округлите до сотых.

Условие:

Задание № 3.1

Общее условие:

На горизонтальной плоскости закреплена очень длинная непроводящая трубка из неполяризующегося материала. Внутри трубки может перемещаться без трения небольшой шарик массы m=20 г с зарядом $q_0=+2$ мкКл. Два других шарика с зарядами $q_1=+2$ мкКл и $q_2=+6$ мкКл закреплены симметрично относительно трубки. Трубка и заряды q_1 и q_2 расположены в одной горизонтальной плоскости. В начальный момент времени все три заряда находятся в вершинах равностороннего треугольника со стороной l=20 см. Шарик внутри трубки отпускают без начальной скорости.

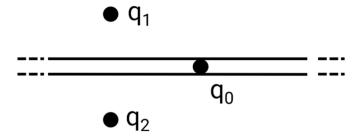
Условие:

В каком направлении согласно рисунку начинает двигаться шарик внутри трубки?

Варианты ответов:

Вправо

Влево


Остаётся на месте

Условие:

Чему равняется ускорение шарика внутри трубки в начальный момент времени? Ответ выразите в m/c^2 , округлите до десятых.

Условие:

На горизонтальной плоскости закреплена очень длинная непроводящая трубка из неполяризующегося материала. Внутри трубки может перемещаться без трения небольшой шарик массы m=10 г с зарядом $q_0=+1$ мкКл. Два других шарика с зарядами $q_1=+3$ мкКл и $q_2=-1$ мкКл закреплены симметрично относительно трубки. Трубка и заряды q_1 и q_2 расположены в одной горизонтальной плоскости. В начальный момент времени все три заряда находятся в вершинах равностороннего треугольника со стороной l=10 см. Шарик внутри трубки отпускают без начальной скорости.

Условие:

В каком направлении согласно рисунку начинает двигаться шарик внутри трубки?

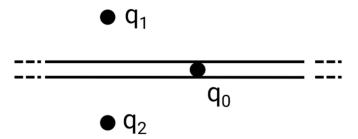
Варианты ответов:

Вправо

Влево

Остаётся на месте

Условие:


Чему равняется ускорение шарика внутри трубки в начальный момент времени? Ответ выразите в M/c^2 , округлите до десятых.

Условие:

Задание № 3.3

Общее условие:

На горизонтальной плоскости закреплена очень длинная непроводящая трубка из неполяризующегося материала. Внутри трубки может перемещаться без трения небольшой шарик массы m=10 г с зарядом $q_0=+3$ мкКл. Два других шарика с зарядами $q_1=-5$ мкКл и $q_2=-3$ мкКл закреплены симметрично относительно трубки. Трубка и заряды q_1 и q_2 расположены в одной горизонтальной плоскости. В начальный момент времени все три заряда находятся в вершинах равностороннего треугольника со стороной l=20 см. Шарик внутри трубки отпускают без начальной скорости.

Условие:

В каком направлении согласно рисунку начинает двигаться шарик внутри трубки?

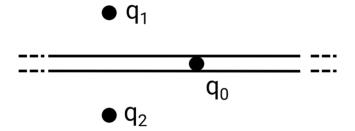
Варианты ответов:

Вправо

Влево

Остаётся на месте

Условие:


Чему равняется ускорение шарика внутри трубки в начальный момент времени? Ответ выразите в m/c^2 , округлите до десятых.

Условие:

Задание № 3.4

Общее условие:

На горизонтальной плоскости закреплена очень длинная непроводящая трубка из неполяризующегося материала. Внутри трубки может перемещаться без трения небольшой шарик массы m=5 г с зарядом $q_0=-2$ мкКл. Два других шарика с зарядами $q_1=+5$ мкКл и $q_2=-3$ мкКл закреплены симметрично относительно трубки. Трубка и заряды q_1 и q_2 расположены в одной горизонтальной плоскости. В начальный момент времени все три заряда находятся в вершинах равностороннего треугольника со стороной l=30 см. Шарик внутри трубки отпускают без начальной скорости.

Условие:

В каком направлении согласно рисунку начинает двигаться шарик внутри трубки?

Варианты ответов:

Вправо

Влево

Остаётся на месте

Условие:

Чему равняется ускорение шарика внутри трубки в начальный момент времени? Ответ выразите в $\mathrm{m/c^2}$, округлите до десятых.

Условие: