11 класс

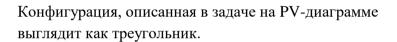
11.1. **Треугольник.** Тепловая машина в процессе с молярной теплоемкостью 2R увеличивает температуру рабочего тела (1 моля гелия) от T_1 до некой неизвестной температуры, далее уменьшает температуру до $2T_1$ в процессе с молярной теплоемкостью 3/2 R и возвращается в исходное состояние с теплоемкостью 5/2 R. Начертите PV-диаграмму тепловой машины и определите ее КПД.

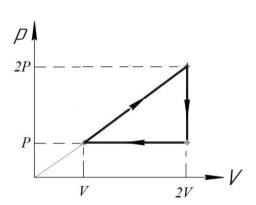
Решение (фольклор):

Процесс с молярной теплоемкостью 3/2 R – процесс с неизменным объемом.

Процесс с молярной теплоемкостью 5/2 R – процесс с неизменным давлением.

Процесс с молярной теплоемкостью 2R — процесс $p \sim V$. Это следует, например, из уравнения политропы.





Из подобия треугольников и из уравнения Менделеева-Клапейрона следует, что неизвестная температура — это $4T_1$.

Для начальной точки процесса $PV = RT_1$. Работа за цикл равна $A = \frac{PV}{2} = \frac{RT_1}{2}$. Тепло подводилось только на начальном участке $Q_+ = 2R \cdot 3T_1 = 6RT_1$.

Искомое КПД
$$\eta = \frac{A}{Q_+} = \frac{1}{12}$$

Критерии оценивания (10 баллов)

1	$\frac{3}{2}R = C_V$	0,5 балла
2	$\frac{5}{2}R = C_p$	0,5 балла
3	Процесс с молярной теплоемкостью 2R – процесс р ~ V	2 балла
4	Правильно начерчен качественный вид PV-диаграммы	2 балла
5	Грамотно применены уравнения Менделеева-Клапейрона	1 балл
6	$A = \frac{PV}{2} = \frac{RT_1}{2}$ или аналогичное	1 балл
7	$Q_+ = 6RT_1$ или аналогичное	1 балл
8	$\eta = \frac{A}{Q_+}$ или аналогичное	1 балл
9	Otbet $\eta = \frac{1}{12}$	1 балл

11.2. Резинка. Заряженное резиновое кольцо имеет радиус $R_1 = 13,6$ см. Когда заряд кольца уменьшили вдвое, его радиус уменьшился до $R_2 = 11,3$ см. Определите радиус незаряженного кольца R_0 . Для кольца справедлив закон Гука.

Решение (Рубцов Д.Н.):

Из соображений симметрии заряд Q распределится равномерно по всему кольцу радиусом R, поэтому можно говорить о погонной плотности заряда $\lambda = \frac{Q}{2\pi R}$.

Рассмотрим маленькую часть кольца радиусом (дуга угловым размером $\alpha \to 0$). Она отталкивается от всех элементарных частей кольца, суммарная кулоновская сила направлена перпендикулярно ей и уравновешивается противонаправленными компонентами гуковских сил.

Ясно, что кулоновская сила пропорциональна заряда всего кольца и заряду маленькой части и обратно пропорциональна квадрату радиуса $F_{\rm K}=\delta \frac{Q\lambda R\alpha}{R^2}=\delta \frac{Q^2\alpha}{2\pi R^2}.$

Суммарная сила упругости равна $F_0=k(2\pi R-2\pi R_0)$, тогда ее компонента, уравновешивающая кулоновскую силу $F=2F_0\sin\frac{\alpha}{2}=F_0\alpha$.

Приравнивая $F_{\rm K}=F$, получим (*) $\delta \frac{Q^2}{4\pi^2R^2}=R-R_0$. Заменим $\frac{\delta}{4\pi^2}=\gamma$. Напишем уравнения для наших случаев

$$(1) \gamma \frac{Q^2}{R_1^2} = R_1 - R_0$$

(2)
$$\gamma \frac{Q^2}{4R_2^2} = R_2 - R_0$$

Решив получившуюся систему, получим ответ $R_0=\frac{4R_2^3-R_1^3}{4R_2^2-R_1^2}=10$,0 см.

Критерии оценивания (10 баллов)

1	Идея того, что резинка растягивается из-за взаимного	0,5 балла
	электростатического отталкивания	
2	Суммарная кулоновская сила направлена перпендикулярно	0,5 балла
	элементарному участку кольца	
3	Баланс сил $F = 2F_0 \sin \frac{\alpha}{2} = F_0 \alpha$	2 балла
4	Закон Гука $F_0 = k(2\pi R - 2\pi R_0)$,	1 балл
5	Кулоновская сила пропорциональна заряда всего кольца и заряду	2 балла
	маленькой части и обратно пропорциональна квадрату радиуса F_{κ} =	
	$\delta \frac{Q\lambda R\alpha}{R^2} = \delta \frac{Q^2\alpha}{2\pi R^2}.$	
6	Записана система уравнений (1) и (2)	2 балла
7	$R_0 = rac{4R_2^3 - R_1^3}{4R_2^2 - R_1^2} = 10,0 ext{ cm}$	2 балла

11.3. В двойном фокусе. На рисунке изображен

точечный источник света, находящийся в двойном фокусе тонкой собирающей линзы, и сечение области видимости (О.В.) его изображения плоскостью рисунка. Перенесите

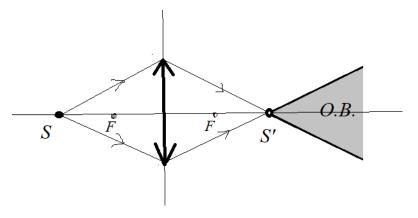
(схематично) рисунок в бланк решений и восстановите положение линзы (ее сечение плоскостью рисунка) и ее фокусов.

Решение (Рубцов Д.Н.):

Точечный источник света, находящийся в двойном фокусе тонкой собирающей линзы, дает действительное изображение, находящееся в другом двойном фокусе. Это следует из формулы тонкой линзы или из подобия треугольников при рассмотрении хода луча в тонкой линзе.

Область видимости действительного изображения исходит от самого этого изображения

S'. Следовательно, отрезок, соединяющий источник S и изображение S', лежит на главной оптической оси линзы. Середина этого отрезка — оптический центр линзы, а срединный перпендикуляр — лежит в плоскости линзы. Продолжение крайних лучей области видимости до плоскости линзы дает нам ограничение на размер линзы. Фокусы восстанавливаются тривиально.



Критерии оценивания (10 баллов)

1	Изображение находится в двойном фокусе	1 балл
2	Вершина конуса области видимости – само изображение	1 балл
3	Восстановлена Г.О.О.	1 балл
4	Восстановлен оптический центр линзы	1 балл
5	Восстановлена плоскость линзы	2 балла
6	Ограничен размер линзы	3 балла
7	Восстановлены оба фокуса	1 балл

11.4. **Максимальная мощность.** Тонкий цилиндрический проводник длиной l нагревается до температуры t_l при подключении его к идеальному источнику напряжения. До какой длины L нужно пластично растянуть проводник, чтобы на нем выделялась максимально возможная тепловая мощность при подключении к тому же источнику? Температура в лаборатории постоянна и равна t_0 . Температура плавления материала проводника t ($t_l < t$). Количество теплоты, отданное через площадку на границе раздела с воздухом площадью S за время t, пропорционально разности температур этих тел $Q = \beta t S \Delta T$. Считать, что этот металл почти не расширяется при нагревании, его удельное сопротивление не зависит от температуры. Мощностью теплоотдачи через торцы пренебречь.

Решение (Рубцов Д.Н.):

m=Sl
ho, $R=\delta l/S o R=lpha l^2.$ Площадь теплоотдачи $S_0=\ 2\pi r l=\gamma \sqrt{l}$

Мощность электрическая идет на мощность потерь. $\frac{U^2}{\alpha \times l^2} = \beta (t_1 - t_0) \sqrt{l}$

Для искомого случая справедливо уравнение $\frac{U^2}{\alpha \times L^2} = \beta (t_2 - t_0) \sqrt{L}$

Нетрудно найти, что мощность пропорциональна разности температур в степени 4/5

$$P = k \sqrt[5]{(t_1 - t_0)^4}$$

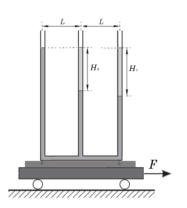
Мощность максимальна, когда температура, до которой нагревается проводник, равна температуре плавления.

$$L = l \times \sqrt[\frac{5}{2}]{\frac{(t_1 - t_0)}{(t - t_0)}}$$

Критерии оценивания (10 баллов)

1	$m = Sl\rho$	0,5 балла
2	$R = \delta l/S$	0,5 балла
3	$S_0 \sim rl$	0,5 балла
4	$S \sim r^2$	0,5 балла
5	Записаны уравнения ТБ	3 балла
6	$P = k \sqrt[5]{(t_1 - t_0)^4}$	2 балла
7	Сделан вывод, что мощность – максимальна, когда проводник	1 балл
	нагревается до температуры плавления	
8	$L = l \times \sqrt[\frac{5}{2}]{\frac{(t_1 - t_0)}{(t - t_0)}}$	2 балла

11.5. **Тройник**. В правое колено сообщающегося сосуда, заполненного водой, наливают керосин высотой H_1 , а в среднее — высотой $H_2 = 20$ см. Плотность керосина $\rho = 800 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$, воды $\rho_0 = 1000 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$. Расстояние между коленами сосуда L = 50 см. Тележку начинают двигать с ускорением a таким, что высоты столбов жидкостей во всех трех сосудах становятся одинаковы и равны H = 100 см. Найдите H_1 и a. Ускорение свободного падения $g = 10 \ \mathrm{M/c}^2$.



Решение (фольклор):

Т.к. сила F горизонтальна, то и ускорение системы также горизонтально. Это значит, что давления в нижних точках колен равны $p_1 = \rho_0 g(H-H_1) + \rho g H_1$, $p_2 = \rho_0 g(H-H_2) + \rho g H_2$, $p_3 = \rho_0 g H$. Запишем 2 закон Ньютона (теорема о движении центра масс) для горизонтальных столбов воды между коленами: $(p_3 - p_2)S = (p_2 - p_1)S = \rho_0 a L S$. Из этих уравнений получим, что $H_1 = 2H_2 = 40$ см и $a = g \cdot \frac{(\rho_0 - \rho) H_2}{\rho_0 L} = 0.8 \frac{M}{c^2}$.

Критерии оценивания (10 баллов)

1	Выражения для давлений в нижних точках колен	3 балла
2	Теорема о движении центра масс для горизонтальных столбов воды	3 балла
	между коленами	
3	$H_1 = 2H_2 = 40 \text{ cm}$	2 балла
5	$a = g \cdot \frac{(\rho_0 - \rho)H_2}{\rho_0 L} = 0.8 \frac{M}{c^2}$	2 балла