11 класс

Задача 11.1. Любишь кататься, люби и саночки возить!

Маленький мальчик Паша очень любил кататься на санках со снежной горки, но совсем не любил подниматься в эту горку пешком. Поэтому заботливый папа затаскивал наверх санки вместе с сидящим на них мальчиком с помощью верёвки, прикладывая к ней силу F = 130 Н. Определите коэффициент трения полозьев санок о снег и ускорение, с которым Паша съезжает с горки. Масса мальчика вместе с санками равна 20 кг. Склон горки имеет угол 30° с горизонтом. Во время подъёма санки движутся равномерно, а верёвка параллельна поверхности горки. Ускорение свободного падения принять равным 10 м/c^2 . Сопротивлением воздуха пренебречь.

Ответ: $\mu = 0.17$, a = 3.5 м/c².

Решение: Пусть m — масса мальчика с санками, μ — коэффициент трения полозьев о снег. В случае, когда санки тянут вверх

$$F = mg \sin 30^{\circ} + \mu mg \cos 30^{\circ} \quad \Rightarrow \quad \mu = \frac{F - mg \sin 30^{\circ}}{mg \cos 30^{\circ}} = \frac{130 \text{ H} - 200 \text{ H} \cdot 0.5}{200 \text{ H} \cdot \sqrt{3}/2} = \frac{\sqrt{3}}{10} \approx 0.17.$$

Во втором случае ускорение санок равно

$$a = g(\sin 30^{\circ} - \mu \cos 30^{\circ}) = g\left(0.5 - \frac{\sqrt{3}}{10} \cdot \frac{\sqrt{3}}{2}\right) = 0.35g = 3.5 \text{ m/c}^2.$$

Критерии:

1) Формула $F = mg \sin 30^{\circ} + \mu mg \cos 30^{\circ}$	лла
2) Найдено верное значение коэффициента трения	лла
3) Формула $a = g(\sin 30^{\circ} - \mu \cos 30^{\circ})$	лла
4) Найдено верное значение ускорения санок	лла

Задача 11.2. Кидаем в гору.

На расстоянии L от подножия горы, поверхность которой образует угол α с горизонтом, находится место, откуда брошено тело. Угол между направлением броска и горизонтом также равен α (см. рис. 11.1). Определите время, за которое брошенное таким образом тело долетит до склона горы, если бросок достаточно силён, чтобы это было возможно. Сопротивлением воздуха пренебречь. Высоту склона считать достаточно большой.

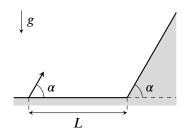


Рис. 11.1.

Ответ: $\sqrt{2L \operatorname{tg} \alpha/g}$.

Решение: Пусть s — расстояние от подножия горы до точки попадания тела в её склон, v_0 — начальная скорость тела, а t — время полёта камня.

Cnocooldown 1. Возьмём начало координат в точке броска и направим ось Ox горизонтально, а ось Oy вертикально. Тогда

$$v_0 t \cos \alpha = L + s \cos \alpha,$$
 $v_0 t \sin \alpha - \frac{gt^2}{2} = s \sin \alpha.$

Выражая из первого уравнения v_0 и подставляя во второе, получим:

$$\frac{L + s \cos \alpha}{\cos \alpha} \cdot \sin \alpha - \frac{gt^2}{2} = s \sin \alpha \quad \Rightarrow \quad \frac{L \sin \alpha}{\cos \alpha} - \frac{gt^2}{2} = 0 \quad \Rightarrow \quad t = \sqrt{\frac{2L \operatorname{tg} \alpha}{g}}.$$

 $Cnocof\ 2$. Возьмём начало координат в нижней точке горы и направим ось Ox вдоль склона, а ось Oy перпендикулярно склону (рис. 11.2). Тогда в проекции на ось Oy

 $L\sin\alpha - \frac{g\cos\alpha \cdot t^2}{2} = 0.$

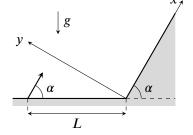


Рис. 11.2.

Отсюда найдём, что $t = \sqrt{2L \lg \alpha/g}$.

Критерии:

Способ 1.

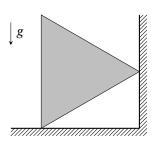
Chocoo 1.	
1) Записана верная формула зависимости координаты x от времени 0,5 балла	
2) Записана верная формула зависимости координаты у от времени	
3) Записаны координаты точки падения тела на склон в выбранной СК	
4) Записано уравнение $v_0t\cos\alpha=L+s\cos\alpha$ или его аналог в выбранной СК	
5) Записано уравнение $v_0 t \sin \alpha - \frac{gt^2}{2} = s \sin \alpha$ или его аналог в выбранной СК	
6) Найдено, что $t=\sqrt{2L\operatorname{tg}\alpha/g}$	
Cnocoб 2.	
7) Найдена проекция \vec{g} на ось Oy	
8) Записаны координаты у точки броска и точки попадания в склон	
9) Записано уравнение $L \sin \alpha - g \cos \alpha \cdot t^2/2 = 0$	
10) Найдено, что $t = \sqrt{2L \operatorname{tg} \alpha/g}$	

Указание проверяющим:

- 1) При оценке работы необходимо пользоваться **только одной** группой критериев: пп. 1-6 (Способ 1), либо пп. 7-10 (Способ 2).
- 2) Если баллы за пп. 4,5 выставлены, баллы за пп 1-3 должны ставиться автоматически.

Задача 11.3. Призма в углу.

В углу, образованном горизонтальным полом и вертикальной стенкой, стоит однородная прямая треугольная призма, одна из боковых граней которой перпендикулярная полу (см. рис. 11.3). Основания призмы параллельны плоскости рисунка и являются равносторонними треугольниками. Коэффициент трения между призмой и любой из поверхностей равен μ . При каком минимальном значении μ призма будет находиться в покое?



Ответ: $\mu \approx 0.4$.

Рис. 11.3. **Решение:** Пусть m — масса призмы, а L — расстояние между стеной и противоположной боковой гранью. Изобразим силы, действующие на призму (рис. 11.4): силу тяжести тв, приложенную к центру тяжести призмы; силы реакции N_1 и N_2 , действующие со стороны пола и стенки; силы трения $F_{\rm rp1}$ и $F_{\rm rp2}$. Центр тяжести призмы расположен на расстоянии 2L/3 от стены.

Рассмотрим предельный случай, когда призма начинает соскальзывать, а $F_{\rm rp1} =$ $=\mu N_1,\,F_{{
m Tp}2}=\mu N_2.$ Запишем условие равенства равнодействующей всех сил нулю в проекции на горизонтальную и вертикальную оси:

$$\mu N_1 - N_2 = 0, \qquad N_1 + \mu N_2 - mg = 0,$$

откуда получим, что

ки О):

$$N_1 = \frac{mg}{1 + \mu^2}, \qquad N_2 = \mu N_1 = \frac{\mu mg}{1 + \mu^2}.$$

Запишем теперь правило моментов относительно угла между стеной и полом (точ-

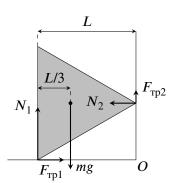


Рис. 11.4.

$$\begin{split} N_1 L &= mg \cdot \frac{2L}{3} + N_2 \cdot \frac{L}{\sqrt{3}} \quad \Rightarrow \quad \frac{mgL}{1 + \mu^2} = \frac{2mgL}{3} + \frac{\mu mgL}{\sqrt{3}(1 + \mu^2)} \quad \Rightarrow \quad 3 = 2(1 + \mu^2) + \sqrt{3}\mu \quad \Rightarrow \\ & \qquad \Rightarrow \quad 2\mu^2 + \sqrt{3}\mu - 1 = 0. \end{split}$$

Решая полученное уравнение и отбрасывая отрицательный корень, определим коэффициент трения

$$\mu = (\sqrt{11} - \sqrt{3})/4 \approx 0.4.$$

Критерии:

1) Верно изображены силы, действующие на призму	IЛ
2) Указано, что центр тяжести призмы находится на расстоянии $2L/3$ (или аналог в других обозначениях) 1 бал	IЛ
3) Правильно записано условие равенства суммы сил нулю в проекции на одну из осей	ΙЛ
4) Правильно записано условие равенства суммы сил нулю в проекции на другую ось	IЛ
5) Найдено выражение для N_1 или N_2 через μ и mg	ΙЛ
6) Правильно записано правило моментов	ıa
7) Получено уравнение $2\mu^2 + \sqrt{3}\mu - 1 = 0$ или его аналог	ıa
8) Найлено значение и	LП

Указание проверяющим:

- 1) Пункт 1 оценивается независимо от остальных.
- 2) В п. 2 достаточно указания, что центр тяжести находится в точке пересечения медиан, которая делит каждую в отношении 1:2.
- 3) В пункте 5 правило моментов может быть записано относительно любой точки. Если оно записано верно, баллы ставятся.
- 4) Вместо одного из условий равенства нулю суммы сил (или даже обоих) может быть записано правило моментов относительно ещё какой-либо дополнительной точки (точек). В этом случае первое верно написаное правило моментов оценивается в 2 балла (п.6 критериев), а следующее — в 1 балл (п.4 критериев).
- 5) Если в п.7 записано верное уравнение, полученное корректным способом, баллы за пп.2-6 ставятся автоматически.

Задача 11.4. Перезарядка с диодом.

Цепь, изображённая на рис. 11.5а, состоит из двух конденсаторов, диода, резистора и ключа. Сначала ключ разомкнут, конденсатор ёмкостью $C_1 = 10$ мк Φ заряжен зарядом q = 34 мкКл (полярность указана на рис. 11.5а), а на втором конденсаторе заряда нет.

- 1. Определите заряд, который установится на конденсаторе ёмкостью $C_2 = 5$ мк Φ , если ключ замкнуть.
- 2. Найдите количество теплоты, которое выделится на резисторе в процессе перезарядки.

Вольт-амперная характеристика диода изображена на рис. 11.56. При напряжении $U_0=1$ В диод открывается и начинает пропускать ток.

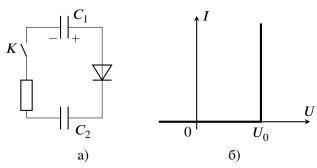


Рис. 11.5.

Ответ: 1) 8 мкКл; 2) 9,6 мкДж.

Решение: До замыкания ключа напряжение на конденсаторе C_1 равно $U_1 = q/C_1 = 3,4$ В. Так как $U_1 > U_0$, при замыкании ключа конденсатор C_1 начнёт разряжаться через диод и станет заряжать второй конденсатор. Конденсатор C_2 будет заряжаться до тех пор, пока разность напряжений между конденсаторами не упадёт до U_0 и диод не закроется. Пусть q_2 — конечный заряд второго конденсатора, тогда

$$\frac{q-q_2}{C_1} - \frac{q_2}{C_2} = U_0 \quad \Rightarrow \quad \frac{34 \text{ мкКл} - q_2}{10 \text{ мк}\Phi} - \frac{q_2}{5 \text{ мк}\Phi} = 1 \text{ B} \quad \Rightarrow \quad q_2 = 8 \text{ мкКл}.$$

Количество теплоты, выделяющееся на диоде, можно найти как

$$Q_D = q_2 U_0 = 8$$
 мкДж.

Количество теплоты, выделяющееся на резисторе, равно

$$Q_R = -\Delta W - Q_D$$

где ΔW — изменение энергии конденсаторов. Вычислим его:

$$\Delta W = \frac{(q-q_2)^2}{2C_1} + \frac{q_2^2}{2C_2} - \frac{q^2}{2C_1} = \frac{(26 \text{ мкКл})^2}{2 \cdot 10 \text{ мкКл}} + \frac{(8 \text{ мкКл})^2}{2 \cdot 5 \text{ мкКл}} - \frac{(34 \text{ мкКл})^2}{2 \cdot 10 \text{ мкКл}} = -17,6 \text{ мкДж}.$$

Отсюда получим, что

$$Q_R = -\Delta W - Q_D = 9.6$$
 мкДж.

Критерии:

1) Записано условие $(q-q_2)/C_1-q_2/C_2=U_0$ или аналог	. 2 балла
2) Найдено верное значение q_2	1 балл
3) Записана верная формула для Q_D	1 балл
4) Записана формула $Q_D+Q_R=-\Delta W$ или аналог	
5) Записано выражение для ΔW через заряды и ёмкости	. 2 балла
6) Найдено верное значение Q_R	. 2 балла

Задача 11.5. Перераспределение тепла.

Вертикальный цилиндрический теплоизолированный сосуд, заполненный идеальным одноатомным газом, разделён подвижным горизонтальным поршнем на две равные по объёму части. Количество вещества в верхней и нижней частях сосуда одинаково, температура в верхней части равна T_0 , а в нижней — $3T_0$. Из-за слабой теплопроводности поршня температура в сосуде медленно начинает выравниваться. Определите температуры газа в верхней и нижней частях сосуда, когда поршень делит его объём в отношении 2:3.

Ответ:
$$T_{\rm B} = 8T_0/5$$
, $T_{\rm H} = 8T_0/3$.

Решение: Давление в нижнем отсеке всегда больше, чем в верхнем на некоторую постоянную величину, определяемую массой поршня. Обозначим её как p_{Π} . Рассмотрим начальное состояние системы. Пусть давление в верхней половине равно p_0 , объём половины сосуда — V_0 . Тогда, во-первых, $p_0V_0 = vRT_0$, где v — количество газа в одном отсеке, и, во-вторых, давление в нижней равно $p_0 + p_{\Pi}$. Так как объёмы отсеков равны, а температуры газа отличаются втрое,

$$p_0 + p_{\Pi} = 3p_0 \quad \Rightarrow \quad p_{\Pi} = 2p_0.$$

Пусть поршень теперь делит объём сосуда в отношении 2:3. Это значит, что $V_{\rm H}=4V_0/5, V_{\rm B}=6V_0/5$ (при охлаждении нижнего отсека его объём будет меньше, чем у верхнего). Поскольку извне в сосуд тепло не подводится,

$$0 = \frac{3}{2} \nu R (\Delta T_{\rm H} + \Delta T_{\rm B}) + p_{\rm II} \Delta V_{\rm H} \quad \Rightarrow \quad 0 = \frac{3}{2} \nu R (T_{\rm H} + T_{\rm B} - 4T_0) - \frac{2p_0 V_0}{5}.$$

Здесь индекс «н» здесь и далее относится к параметрам для нижнего отсека, а индекс «в» — к параметрам верхнего. Подставляя сюда равенство $p_0V_0 = \nu RT_0$, получим, что

$$0 = \frac{3}{2}(T_{\rm H} + T_{\rm B} - 4T_0) - \frac{2T_0}{5} \quad \Rightarrow \quad T_{\rm H} + T_{\rm B} = \frac{64T_0}{15}.$$

Запишем уравнения Менделеева-Клапейрона для нижнего и верхнего отсеков:

(нижний отсек)
$$p_{_{\rm H}} \cdot \frac{4V_0}{5} = \nu RT_{_{\rm H}} \quad \Rightarrow \quad p_{_{\rm H}} = \frac{5\nu RT_{_{\rm H}}}{4V_0},$$

(верхний отсек)
$$p_{_{\rm B}} \cdot \frac{6V_0}{5} = \nu RT_{_{\rm B}} \quad \Rightarrow \quad p_{_{\rm B}} = \frac{5\nu RT_{_{\rm B}}}{6V_0}.$$

Так как $p_{\rm H} - p_{\rm B} = p_{\rm II} = 2p_0$,

$$2p_0 = \frac{5\nu RT_{_{\rm H}}}{4V_0} - \frac{5\nu RT_{_{\rm B}}}{6V_0} \quad \Rightarrow \quad 2\nu RT_0 = \frac{5\nu RT_{_{\rm H}}}{4} - \frac{5\nu RT_{_{\rm B}}}{6} \quad \Rightarrow \quad 2T_0 = \frac{5T_{_{\rm H}}}{4} - \frac{5T_{_{\rm B}}}{6}.$$

Решая полученную систему, найдём значения $T_{\scriptscriptstyle
m H}$ и $T_{\scriptscriptstyle
m B}$:

$$T_{\rm B} = 8T_0/5, \quad T_{\rm H} = 8T_0/3.$$

Критерии:

1) Указано, что поршень массивный и/или оказывает какое-то дополнительное давление 0,5 балла
2) Найдены объёмы отсеков, когда поршень делит сосуд как 2:3
3) Формула $0 = \frac{3}{2} \nu R(\Delta T_{\rm H} + \Delta T_{\rm B}) + p_{\rm H} \Delta V_{\rm H}$ или аналог
4) Уравнение Менделеева-Клапейрона для нижнего отсека
5) Уравнение Менделеева-Клапейрона для верхнего отсека
6) Полученная правильная система уравнений для определения $T_{\rm H}$ и $T_{\rm B}$
7) Найдены верные выражения для T_{n} и T_{n}

Указание проверяющим:

Если в п. 7 получено только одно верное выражение из двух, ставить 1 балл.