8 класс

Задача 8.1. Трижды треть.

Красная Шапочка пошла в гости к бабушке. Первую треть пути она шла не спеша по лесной дорожке, но затем, встретив знакомого Волка, остановилась с ним поболтать. Обменявшись новостями, девочка пошла дальше. Придя к бабушке, Шапочка подсчитала, что с Волком она разговаривала треть всего времени своего путешествия, а её средняя скорость на всём пути (с учётом остановки) составила треть от скорости на последнем участке. Найдите скорость, с которой девочка шла до встречи с Волком, если её средняя скорость (с учётом остановки) равна v. Считайте, что до встречи и после встречи Шапочка двигалась с постоянной скоростью.

Ответ: 3v/4.

Решение: Если v — средняя скорость Красной Шапочки, то 3v — её скорость после встречи с Волком. Пусть t — общее время в пути. Тогда t/3 — время разговора с Волком, а s = vt — общее расстояние, которое прошла девочка. После встречи с Волком она прошла 2s/3, следовательно, время её движения после встречи равно

$$t_{\text{после}} = \frac{2s/3}{3v} = \frac{2vt}{9v} = \frac{2t}{9}.$$

Время движения девочки до встречи, соответственно, равно

$$t_{110} = t - t/3 - 2t/9 = 4t/9.$$

Определим теперь скорость Красной Шапочки до встречи с Волком:

$$v_{\text{do}} = \frac{s/3}{4t/9} = \frac{vt/3}{4t/9} = \frac{3v}{4}.$$

Критерии:

1) Записано $s_{\text{после}} = 2s/3$ (или аналог)	алл
2) Найдено, что $t_{\text{после}} = 2t/9$ (или аналог)	лла
3) Найдено, что $t_{\text{до}} = 4t/9$ (или аналог)	лла
4) Найдено, что $v_{\pi 0} = 3v/4$	ілла

Указание проверяющим:

- 1) Если учащийся представил корректное решение, отличающееся от авторского, и получил правильный ответ, ставится полный балл независимо от способа решения (при условии, что способ корректный!).
- 2) Если учащийся привёл корректное, но неполное неавторское решение, позволившее ему получить балл за какой-то пункт, баллы за предыдущие пункты ставятся автоматически. То есть не может быть, что есть баллы за пункт 3, но нет баллов за пункты 1 и/или 2.
- 3) Если в решении берётся конкретное значение t, s и т.п. (например, t = 1 ч), такое решение оценивается максимум в 1 балл.

Задача 8.2. Вес стаканчика.

Восьмиклассница Арина, готовясь к олимпиаде по физике, решила поэкспериментировать. Она взяла латунный стаканчик C, подвесила его к электронному динамометру \mathcal{J} и поместила внутрь большого сосуда (см. рис. 8.1a). После этого она стала медленно, с постоянной скоростью наливать в сосуд неизвестную жидкость и следить за показаниями динамометра. Зависимость показаний прибора F от времени t, в течение которого наливалась жидкость, девочка изобразила на графике (рис. 8.1б). Определите по этим данным плотность неизвестной жидкости, ёмкость стаканчика и скорость u (в мл/с), с которой наливается жидкость. Плотность латуни равна 8500 кг/м³. Ускорение свободного падения принять равным 10 Н/кг. Объёмом нитей и креплений пренебречь.

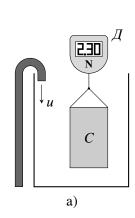


Рис. 8.1.

Ответ: 740 кг/м^3 , 162 см^3 , 9 мл/с.

Решение: По графику определим, что вес стаканчика в воздухе равен 2,3 Н. Отсюда получим, что его масса равна $m_{\pi}=230~\mathrm{r}$, а объём латуни составляет $V_{\pi}=m_{\pi}/\rho_{\pi}\approx27~\mathrm{cm}^3$. «Провал» на графике связан с тем, что сначала жидкость поднимается вокруг стаканчика, уменьшая его вес, а затем, достигнув его краёв, наливается внутрь, и вес при этом начинает увеличиваться.

Разность между начальным и конечным значением веса равна силе Архимеда, действующей на стаканчик. Исходя из этого, найдём плотность жидкости ρ :

$$F_A = 2.3 \text{ H} - 2.1 \text{ H} = 0.2 \text{ H} \quad \Rightarrow \quad \rho = \frac{F_A}{gV_{\text{II}}} = \frac{20 \text{ r}}{27 \text{ cm}^3} \approx 0.74 \text{ r/cm}^3.$$

Разность между конечным и минимальным значением веса даёт вес налитой в стаканчик жидкости. Отсюда найдём объём жидкости в стаканчике, то есть его ёмкость

$$V = \frac{2.1 \text{ H} - 0.9 \text{ H}}{\rho g} = 162 \text{ cm}^3.$$

Так как стаканчик заполнялся в течение 52 c - 34 c = 18 c, получим значение скорости u:

$$u = \frac{V}{18 \text{ c}} = 9 \text{ мл/c}.$$

Критерии:

1) Верно найден объём стенок стаканчика
2) Указан корректный способ определения плотности жидкости
3) Верно найдено значение плотности жидкости
4) Указан корректный способ определения ёмкости стаканчика
5) Верно найдено значение ёмкости стаканчика
6) Указан корректный способ определения u
7) Верно найдено значение и

Указание проверяющим:

В пп. 1,3,5,7 допустимо небольшое отклонение от значений, полученных в авторском решении, вызванное погрешностями процедуры округления.

Задача 8.3. Лёд — туда, лёд — сюда.

В одном теплоизолированном сосуде находится 100 г воды при температуре 1 °С. В другом теплоизолированном сосуде находятся при температуре −36 °С кусок льда массой 50 г и 100 г керосина. Лёд переносят в сосуд с водой и, дождавшись теплового равновесия, переносят обратно в сосуд с керосином. Определите установившуюся температуру в обоих сосудах. Удельная теплоёмкость воды равна 4200 Дж/(кг °С), удельные теплоёмкости керосина и льда равны 2100 Дж/(кг °С), удельная теплота плавления льда — 330 кДж/кг. Теплоёмкостью сосудов можно пренебречь. Керосин в рассматриваемом диапазоне температур является жидкостью. При переносе льда жидкости из сосудов не выливаются.

Ответ: 0 °С и −22,5 °С.

Решение: Рассмотрим установление теплового равновесия между водой и перенесённым в неё льдом. Для нагрева 50 г льда от -36 °C до 0 °C требуется количество теплоты, равное

$$Q_{\pi} = c_{\pi} m_{\pi} \cdot 36 \,^{\circ}\text{C} = 2100 \,\text{Дж/(кг} \cdot ^{\circ}\text{C}) \cdot 0,05 \,\text{кг} \cdot 36 \,^{\circ}\text{C} = 3780 \,\text{Дж}.$$

Вода при охлаждении до 0 °C отдаёт $Q_{\rm B} = c_{\rm B} m_{\rm B} \cdot 1$ °C = 420 Дж, что меньше, чем $Q_{\rm J}$. Но для того чтобы полностью кристаллизовать 100 г воды, требуется у неё «забрать» 33 кДж, а это уже больше, чем $Q_{\rm J}$. Следовательно, установившая температура в сосуде с водой будет равна 0 °C, причём часть воды должна превратиться в лёд. Найдём массу дополнительно образовавшегося льда $\Delta m_{\rm J}$:

$$Q_{\mathrm{B}} + \lambda \Delta m_{\mathrm{M}} = Q_{\mathrm{M}} \quad \Rightarrow \quad \Delta m_{\mathrm{M}} = \frac{Q_{\mathrm{M}} - Q_{\mathrm{B}}}{\lambda} = \frac{3360 \ \mathrm{Дж}}{330000 \ \mathrm{Дж/кг}} \approx 10.2 \ \mathrm{г}.$$

Таким образом, мы переносим назад, в сосуд с керосином, уже 60.2 г льда при 0 °С. Пусть t — установившая там температура, причём t < 0 °С. Запишем уравнение теплового баланса между керосином и льдом:

$$c_{\kappa} \cdot 100 \,\Gamma \cdot (t + 36 \,^{\circ}\text{C}) = c_{\pi} \cdot 60.2 \,\Gamma \cdot (0 \,^{\circ}\text{C} - t).$$

Так как $c_{\scriptscriptstyle \mathrm{K}}=c_{\scriptscriptstyle \mathrm{J}}$, получим

$$t + 36 \,^{\circ}\text{C} = -0,602t \quad \Rightarrow \quad t = -\frac{36 \,^{\circ}\text{C}}{1.602} \approx -22,5 \,^{\circ}\text{C}.$$

Критерии:

* *	
1) Предположение о том, что в сосуде с водой установится температура $0^{\circ}\!$	1 балл
2) Предположение о том, что масса льда при этом увеличится	1 балл
3) Обосновано, что в сосуде с водой установится температура 0 $^{\circ}$ С	2 балла
4) Найдена дополнительная масса льда (10 г)	2 балла
5) Правильно записано уравнение теплового баланса для системы «керосин-лёд»	2 балла
6) Найдено верное значение установившейся температуры в системе «керосин-лёд»	2 балла

Указание проверяющим:

- 1) Если обоснование (пункт 3) отсутствует, прочие пункты критериев оценивать независимо.
- 2) Предположение в пп. 1,2 может быть не высказано явно, а подразумеваться формой уравнения теплового баланса. В этом случае баллы также ставятся.
- 3) В п. 6 допустимо небольшое отклонение от значения, полученного в авторском решении, вызванное погрешностями процедуры округления.

Задача 8.4. Давление в равновесии.

Система, состоящая из трёх невесомых блоков, однородной планки массой M и груза, находится в равновесии. Определите массу m груза и силу, с которой он давит на планку, если все нити в системе невесомы и трение в блоках отсутствует. Для удобства на планку нанесены штрихи, делящие её на равные части. Центр груза находится прямо над концом планки.

Ответ: m = 7M/8, P = Mg/4.

Решение: Пусть T — сила натяжения нити, пропущенной через блоки, а P — сила, с которой груз давит на планку. Изобразим силы, действующие на планку — силу тяжести Mg, силу

Рис. 8.2.

б)

2T натяжения нити, которая прикреплена к подвижному блоку и силу давления P (рис. 8.3a), и на груз — силу натяжения нити T, силу тяжести mg и силу, действующую со стороны планки P (рис. 8.3б). Запишем условие равновесия для сил, действующих на планку и груз:

(планка)
$$2T = Mg + P$$
, (груз) $T + P = mg$.

Запишем теперь правило моментов для планки относительно точки подвеса планки к блоку (l — длина одного деления на планке):

$$Mgl = P \cdot 4l \quad \Rightarrow \quad P = \frac{Mg}{4}.$$

Подставляя это выражение в полученные выше уравнения, получим

$$T = \frac{Mg + P}{2} = \frac{5Mg}{8},$$

$$mg = T + P = \frac{5Mg}{8} + \frac{Mg}{4} = \frac{7Mg}{8} \quad \Rightarrow \quad m = 7M/8.$$

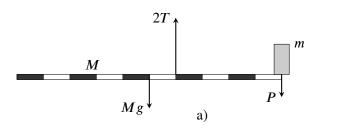


Рис. 8.3.

Критерии:

1) Указано, что сила натяжения подвеса планки вдвое больше силы натяжения подвеса груза 1 балл
2) Правильно записано условие равенства сил, действующих на одно из тел
3) Правильно записано условие равенства сил, действующих на другое тело
4) Правильно записано правило моментов относительно какой-либо точки
5) Найдено верное значение массы т
6) Найдено верное значение силы давления P

Указание проверяющим:

- 1) Указание в пункте 1 может быть сделано, например, на чертеже или в условиях равновесия. Балл в этом случае ставить.
- 2) В качестве одного из тел (пп. 2-4) может фигурировать система «груз-планка».
- 3) Вместо одного из условий равенства сил может быть написано правило моментов относительно какой-либо точки, отличной от использованной в п. 4. В случае, если условие написано верно, баллы ставятся за п.3.