ВСЕРОССИЙСКОЙ ОЛИМПИАДЫ ШКОЛЬНИКОВ ПО ФИЗИКЕ 2023 – 2024 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП 8 КЛАСС

Задача 1

Прямоугольная однородная дощечка лежит на гладком столе. Перпендикулярно стороне дощечки вдоль поверхности стола прикладывают силы $F_1 = 3 H$, $F_2 = 3 H$ и неизвестную силу F_3 так, что дощечка остается в покое. Точки приложения и направления сил F_1 и F_2 указаны на рисунке. Определите, на каком расстоянии от левого конца находится точка приложения силы F_3 , если длина дощечки 30 см.

Решение

Для удобства введем длину одного отрезка $l = 3c_M$. Условия равновесия доски

$$F_3 = F_1 + F_2 = 7H$$

$$F_1 2l + F_2 9l = F_3 xl$$

Следовательно $x = \frac{2F_1 + 9F_2}{F_3} = 6$, а расстояние от левого конца

дощечка приложения силы F_3 равно $6l = 18c_M$.

Ответ: $F_3 = 7H$, 18*см*.

Ответ:

Критерии оценивания

Записаны условие статичности	4
Найдено значение силы F_3	2
Найдено положение приложения силы F_3	3
Получен ответ	1

Задача 2

В сосуд, полностью заполненный водой, кладут деревянный шар так, что выливается объем воды $V_0 = 150$ мл. Шар при этом не касается стенок, но касается дна, действуя на него с силой F = 3 H. Определите объем шара, если его плотность равна $\rho = 600 \, \kappa z/m^3$. Ответ дайте в cm^3 . Ускорение свободного падения равно $g=10~H/\kappa z$. Плотность воды $\rho_0=1000~\kappa z/m^3$.

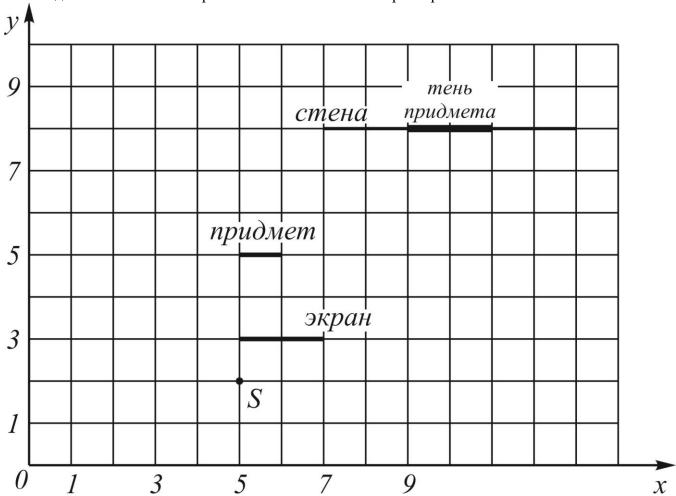
Решение

Запишем второй закон Ньютона для деревянного шара

$$mg = F + F_{AD}$$

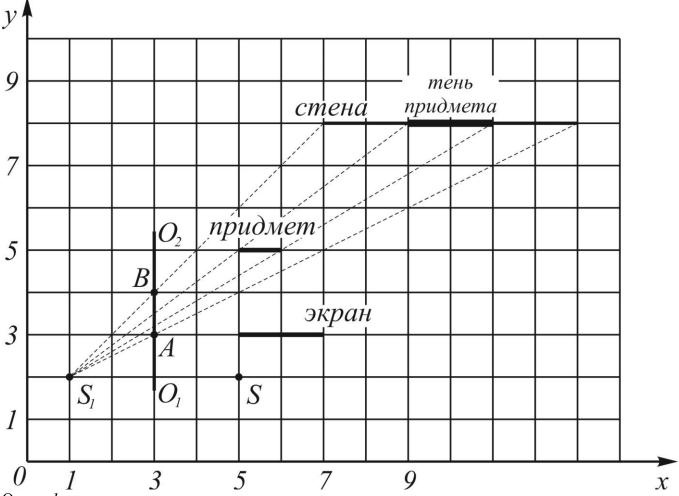
$$\rho Vg = F + V_0 \rho_0 g$$

следовательно
$$V = \frac{F + V_0 \rho_0 g}{\rho g} = 750$$
мл .


Ответ:
$$V = \frac{F + V_0 \rho_0 g}{\rho g} = 750$$
мл.

критерии оценивания	
Записан второй закон Ньютона для шара	4
Записано сила Ампера	1

Записана масса шара	1
Найден объем шара	3
Получен ответ	1

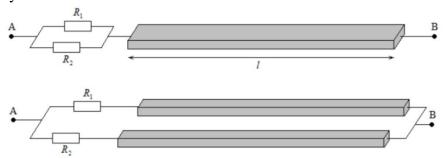

Задача 3

Точечный источник света *S* отделен от стены непрозрачным экраном (вид сверху показан на дополнительном рисунке). Как надо расположить плоское зеркало, чтобы предмет отбрасывал на стену такую тень, как показано на рисунке, а оставшаяся часть стены была освещенной? Необходимо использовать зеркало как можно меньшего размера.

Решение

Для определения положения мнимого источника света полученного зеркалом проведем прямые проходящие через края тени и края предмета до пересечения в точке S_I (мнимый источник). Размеры зеркала будут определяться размером светлого пятна на стене. Плоскость зеркала будет O_1O_2 , а размер ограничен отрезком AB.

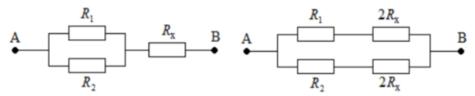
Ответ: 1 клетка.


Ответ:

Критерии оценивания

Определение положения мнимого источника	5
Определена плоскость зеркала	2
Определены максимальные размеры зеркала	2
Получен ответ	1

Задача 4


Участок AB электрической цепи состоит из двух резисторов с сопротивлениями R_1 =5 O_M и R_2 =15 O_M и длинной однородной металлической пластины (смотрите на первом рисунке). Длина пластины l много больше ее ширины, а сопротивление всех соединительных проводов пренебрежимо мало. При этом общее сопротивление участка AB равно R_0 =10 O_M . Пластину разрезали продольно на две половины, как показано на втором рисунке. Чему стало равно общее сопротивление R участка AB?

Решение

Пусть сопротивление металлической пластины до разрезания было равно r. Сопротивление линейного проводника связано с удельным сопротивлением его материала ρ , его длина l и

площадью поперечного сечения S формулой $R_{_{\! X}}=\rho \frac{l}{S}$. Когда пластину разрезали на две равные части, площадь поперечного сечения S каждой части стала в два раза меньше, чем у исходной пластины, следовательно, сопротивление стало в два раза больше и равно $2R_x$. Нарисуем эквивалентные схемы участка АВ до и после разрезания:

Общее сопротивление участка цепи до разрезания равно

$$R_0 = \frac{R_1 R_2}{R_1 + R_2} + R_x,$$

$$R_{_{X}}=R_{_{0}}-rac{R_{_{1}}R_{_{2}}}{R_{_{1}}+R_{_{2}}}=6,25~O{\rm M}~.$$

$$R = \frac{(R_1 + 2R_x)(R_2 + 2R_x)}{R_1 + R_2 + 4R_x} \approx 10,7 \text{ Om}$$

Общее сопротивление участка цепи после разрезания равно
$$R = \frac{\left(R_1 + 2R_x\right)\left(R_2 + 2R_x\right)}{R_1 + R_2 + 4R_x} \approx 10,7 \; \textit{Ом} \; .$$
 Ответ:
$$R = \frac{\left(R_1 + 2r\right)\left(R_2 + 2r\right)}{R_1 + R_2 + 4r} \approx 10,7 \; \textit{Ом} \; .$$

Критерии оценивани

Получено выражение для общего сопротивления до разрезания	3
Найдено сопротивление пластины	3
Получено выражение для общего сопротивления после разрезания	3
Получен ответ	1