ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ФИЗИКЕ (МУНИЦИПАЛЬНЫЙ ЭТАП)

возрастная группа (8 класс)

ЗАДАНИЕ 1

В теплоизолированный сосуд, содержащий 1,5 литра воды при температуре 18 0 С, положили мокрый снег массой 375 г. Когда весь снег растаял, температура воды в сосуде стала равной 3 0 С. Определите, массу воды, которая содержалась в снегу. Потери теплоты не учитывать. Удельная теплоёмкость воды c = 4,2 кДж/(кг $^{.0}$ С), плотность воды $\rho = 1$ г/см 3 , удельная теплота плавления льда $\lambda = 330$ кДж/кг. Ответ выразить в граммах и округлить до целых.

Решение

Мокрый снег это смесь льда и воды, эти две фазы находятся в равновесии и имеют одинаковую температуру $t_0 = 0$ 0 C.

Введём обозначения: V — объём воды, t_1 — температура воды, $m_{\rm CH}$ — масса мокрого снега, $m_{\rm B}$ — масса воды в снеге, $m_{\rm A}$ — масса льда в снеге, t_0 — температура снега, равная 0 0 C, $t_{\rm CM}$ — температура воды (смеси), когда весь снег растает.

Решение задачи основано на уравнении теплового баланса:

$$Q_{\text{отдан}} = Q_{\text{получ}}$$
 .(1),

 $Q_{
m otgah}$ — количество теплоты, которое отдает вода, находящаяся в сосуде, массой m=
ho V, при остывании до температуры $t_{
m cm}$.

$$Q_{\text{отдан}} = cm(t_1 - t_{\text{см}})$$
 или $Q_{\text{отдан}} = c\rho V(t_1 - t_{\text{см}})$. (2)

Полученное количество теплоты идёт на таяние льда

 $Q_1 = \lambda \, m_{\scriptscriptstyle
m I} \,$ (3) , когда лёд превратиться в воду, эта вода и вода, содержащая в снеге, будет нагреваться и получит

$$Q_2 = c m_{cH} (t_{cM} - t_0). (4)$$

$$m_{\mathrm{CH}}=m_{\mathrm{B}}+~m_{\mathrm{\pi}}~(5)$$

$$Q_{\text{получ}} = Q_1 + Q_2 = \lambda m_{\text{л}} + c m_{\text{сн}} (t_{\text{см}} - t_0).$$
 (6)

$$c\rho V (t_1 - t_{\rm CM}) = \lambda m_{\rm J} + c m_{\rm CH} (t_{\rm CM} - t_0). (7)$$
$$m_{\rm J} = \frac{c[\rho V (t_1 - t_{\rm CM}) - m_{\rm CH} (t_{\rm CM} - t_0)]}{\lambda}. (8)$$

Подставив числовые значения, получим $m_{_{\rm J}}\approx 0$, 272 кг = 272 г Искомая величина $m_{_{\rm B}}=\,m_{_{\rm CH}}-\,m_{_{\rm J}}$ и $m_{_{\rm B}}=103$ г

Ответ: в мокром снеге содержалось 103 г воды

Критерии оценивания

1. Обосновано, что мокрый снег имеет температуру 0^{0} С	2 балла
2. Записано уравнение теплового баланса	1 балла
3. Обосновано, записано уравнение (2)	2 балла
4. Обосновано, записано уравнение (6)	2 балла
5 Обосновано, записано уравнение (7) и(8)	2 балла
6. Правильно рассчитана искомая величина и выражена	1 балл
в граммах	
Всего	10 баллов

ЗАДАНИЕ 2.

В теплоизолированный сосуд, заполненный до краёв водой при температуре $t_0 = 20~^{\circ}\mathrm{C}$, опускают деталь плотностью $\rho = 7~\mathrm{г/cm^3}$, нагретую до температуры $t = 150~^{\circ}\mathrm{C}$. Через некоторое время температура воды в сосуде увеличивается до $t_1 = 40,0~^{\circ}\mathrm{C}$. Затем такой же опыт повторяют с двумя такими же деталями, в результате чего вода нагревается до температуры $t_2 = 60,6~^{\circ}\mathrm{C}$. Определите удельную теплоёмкость c материала, из которого сделана деталь. Удельная теплоёмкость воды $c_{\mathrm{B}} = 4,2~\mathrm{кДж/(кг.^{\circ}\mathrm{C})}$, плотность воды $\rho_{\mathrm{B}} = 1~\mathrm{г/cm^3}$. Ответ округлить до целых.

Решение

1-й эксперимент можно описать следующим образом: при опускании детали в воду объёмом V часть воды, выливается из сосуда. Объём вылившейся воды равен объёму детали, обозначим его V_0 .

Для решения задачи используем уравнение теплового баланса:

$$Q_{\text{отдан}} = Q_{\text{получ}}$$
 .(1), $Q_{\text{отдан}} = c \rho V_0(t - t_1)$, (2)

где с — удельная теплоёмкость детали.

$$Q_{\text{получ}} = c_{\text{в}} \, \rho_{\text{в}} (V - V_0) (t_1 - t_0)$$
, (3) где $\rho_{\text{в}}$ — плотность воды.

$$c\rho V_0(t-t_1) = c_{\rm B} \rho_{\rm B}(V-V_0)(t_1-t_0).$$
 (4)

Для второго эксперимента получим уравнение аналогичное уравнению

(4):
$$c\rho 2V_0(t-t_2) = c_{\rm B}\rho_{\rm B}(V-2V_0)(t_2-t_0).$$
 (5)

Перепишем уравнения (4) и (5):

$$c_{\rm B} \rho_{\rm B} (V - V_0) = c \rho V_0 \frac{(t - t_1)}{(t_1 - t_0)}$$
 (6)

$$c_{\rm B} \rho_{\rm B}(V - 2V_0) = c\rho 2V_0 \frac{(t - t_2)}{(t_2 - t_0)}$$
 (7)

Из уравнения (6) вычтем уравнение (7):

$$c_{\rm B} \rho_{\rm B} V_0 = c \rho V_0 \left(\frac{t - t_1}{t_1 - t_0} - 2 \frac{t - t_2}{t_2 - t_0} \right) (8)$$

$$c = \frac{c_{\rm B} \, \rho_{\rm B}}{\rho} \cdot \frac{1}{\frac{t-t_1}{t_1-t_0} - 2\frac{t-t_2}{t_2-t_0}} \quad \text{или } c = \frac{c_{\rm B} \, \rho_{\rm B}}{\rho} \cdot \frac{(t_1-t_0)(t_2-t_0)}{(t-t_1)(t_2-t_0) - 2(t-t_2)(t_1-t_0)} \tag{9}$$

Подставив в (9) числовые значения величин получим искомый ответ, округлённый до целых: $c=547\,\frac{\mbox{Дж}}{\mbox{кг}^{\circ}\mbox{C}}$

Критерии оценивания

1. Обосновано, получено уравнение (2) и (3)	2 балла
2. Записаны уравнения теплового баланса (4) и (5)	2 балла
3. Составлены уравнения (6) и (7)	2 балла
4. Обосновано, записано уравнение (8)	2 балла
5 Представлено решение в общем виде (9)	1 балл
6. Правильно рассчитана искомая величина и выражена	1 балл
в единицах СИ	
Всего	10 баллов

ЗАДАНИЕ 3.

Однородная балка массой 70 кг лежит на платформе, свешиваясь с нее на 1/8 своей длины, как показано на рисунке 1. Какую минимальную вертикальную силу надо приложить в точке A, чтобы приподнять балку от платформы? Ускорение свободного падения принять равным 10 м/c^2 .

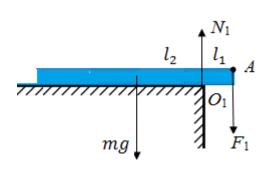
Рис. 1

Максимальный балл – 10

Решение

Оторвать балку от платформы можно двумя способами: нажать на неё вниз или поднимать вверх.

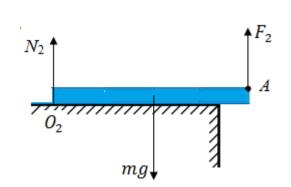
Рассмотрим первый способ: в момент отрыва балки на неё действуют три силы: вертикальная сил F_1 , сила тяжести mg и сила реакции опоры N_1 ,



балка будет проворачиваться вокруг точки N_1 O_1 . Запишем правило моментов сил относительно точки O_1 : $F_1l_1=mgl_2$ (1), момент силы N_1 равен нулю , т. к. её плечо равно нулю. Обозначим длину балки l, тогда плечо $l_1=rac{1}{8}l$, плечо $l_2=rac{1}{2}l-rac{1}{8}l=rac{3}{8}l$, тогда

имеем $F_1 \frac{1}{8} l = mg \frac{3}{8} l$ (2) и $F_1 = 3mg$ (3).

Рассмотрим второй способ: растановка сил указана на рисунке, в этом случае балка проворачивается относительно точки O_2 . Правило моментов относитально этой точки $F_2l_1=mgl_2$, (4) плечи в этом случае $l_1=l$, $l_2=\frac{1}{2}l$. Тогда, имеем $F_2 l = mg \frac{1}{2} l$ (5) и $F_2 = \frac{mg}{2}$ (6).



Очевидно, что $F_1 > F_2$, поэтому расчёт минимальной силы по формуле (6): $F_{min} = \frac{mg}{2} \quad (7). \qquad \text{Подставив} \quad \text{числовые}$ значения получим, что $F_{min} = 350 \; \text{H}.$

Критерии оценивания

1.Указаны два способа отрыва балки	1 балл
2. Представлены два рисунка с обоснованным указанием	2 балла
сил, действующих на балку	
3. Обоснованно записано правило моментов (1) и	2 балла
правильно определены плечи сил для первого способа	
4. Обосновано получена формула (3)	1 балл
5 Обоснованно записано уравнение (5) и правильно	2 балла
определены плечи сил для второго способа	
6. Обоснованно получена формула (6)	1 балл
7. Обоснованно выбрана формула (6) , по которой	1балл
правильно рассчитана минимальная сила	
Всего	10 баллов

ЗАДАНИЕ 4. Псевдоэксперимент

Будет ли меняться жесткость пружины, если её длину уменьшить, например, отрезать от нее какою-то часть? Ответить на этот вопрос можно экспериментальным путем. При исследовании зависимости жёсткости пружины k от её длины l_0 были проведены три группы опытов: в первой группе использовалась пружина длиной l_{01} , во второй группе использовалась та же пружина, но от неё отрезали некоторую часть, и её длина стала равна l_{02} . В третьей — от предыдущей длины пружины отрезали ещё часть, и её длина стала l_{03} . В каждой группе опытов к пружинам подвешивались грузы разной массы m и измерялись соответственно длины l_1 , l_2 , l_3 , растянутых пружин под действием этих грузов. Результаты опытов представлены в Таблице 1. На основании данных опытов необходимо вывести формулу, по

которой можно рассчитать коэффициент жёсткости пружины для разных значений её длины.

Таблица 1

Первая группа, $l_0=l_{01}$					
т, г	100	150	200	250	300
l_1 , cm	17,0	18,0	19,0	20,0	21,0
	Втора группа, $l_0=l_{02}$				
т, г	100	150	200	250	300
l_2 , cm	11,3	12,0	12,7	13,3	14,0
Третья группа, $l_0=l_{03}$					
т, г	100	150	200	250	300
l_3 , cm	5,7	6,0	6,3	6,6	7,0

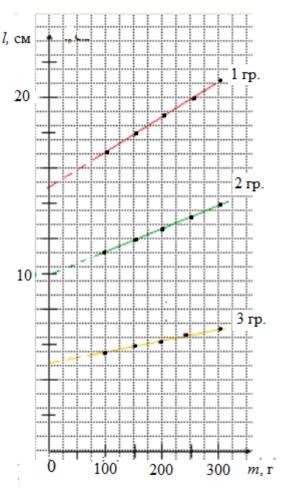
Вам предстоит сделать следующее:

- а) построить графики зависимости l_1 от m, l_2 от m и l_3 от m в одних и тех же координатных осях l и m;
- б) по графикам определить длины пружин l_{01} , l_{02} , и l_{03} в сантиметрах, округлив до десятых;
- в) по графикам определить коэффициенты жёсткости k_1 , k_2 и k_3 , соответствующие длинам пружин l_{01} , l_{02} , и l_{03} ; ускорение свободного падения принять равным 10 м/c^2 , результаты вычислений выразить в единицах Н/м и округлить до целых;

- г) построить график зависимости k от l_0 , где l_0 принимает значения, равные l_{01} , l_{02} , и l_{03} ; и на основании этого графика высказать гипотезу о том, какой математической зависимостью связаны k и l_0 ;
- д) определить в каких координатных осях надо построить график для k, чтобы проверить свою гипотезу; постройте этот график;
- е) выведите формулу, по которой можно рассчитать k для любых значений l_0 ;
 - ж) рассчитать k для $l_0 = 25$ см и $l_0 = 30$ см.

Решение

а) пример построенных графиков



- б) Продолжив графики до пересечения с осью l, определим $l_{01}=15.0$ см, $l_{02}=10.0$ см и $l_{03}=5.0$ см.
- в) Для нахождения жёсткости пружин применяем закон Гука $F_{\rm vnp} = k \Delta l, \, (1)$

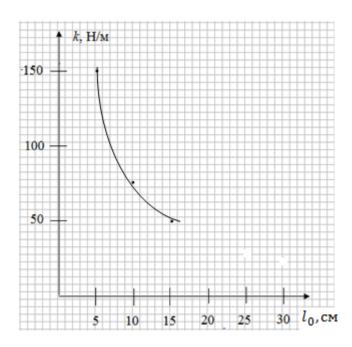
в опытах сила упругости уравновешивается силой тяжести, подвешенного груза, $F_{\text{упр}}=mg$. Тогда $k=\frac{mg}{\Delta l}$ или $k=\frac{mg}{l-l_0}$ (2).

По формуле (2) рассчитаем для пружины, длиной $l_{01}=15{,}0$ см жесткость $k_1=\frac{0{,}100~{\rm kr}\cdot 10{\rm m}/{\rm c}^2}{0{,}17{\rm m}-0{,}15}=50\frac{{\rm H}}{{\rm m}}$, аналогично, найдём $k_2=75\frac{{\rm H}}{{\rm m}}$ и $k_3=150\frac{{\rm H}}{{\rm m}}$.

г) составим таблицу

l_0 , cm	15,0	10,0	5,0
k, Н/м	50	75	150

Пример графика



Из графика можно предположить, что жёсткость пружины обратно пропорциональна длине пружины: $k \sim \frac{1}{l_0}$.

д) Для проверки данной гипотезы построим график зависимости k от $\frac{1}{l_0}$.

Составим таблицу

$\frac{1}{l_0}$, cm ⁻¹	$\frac{1}{15}$	$\frac{1}{10}$	$\frac{1}{5}$
k, H/м	50	75	150

Пример графика

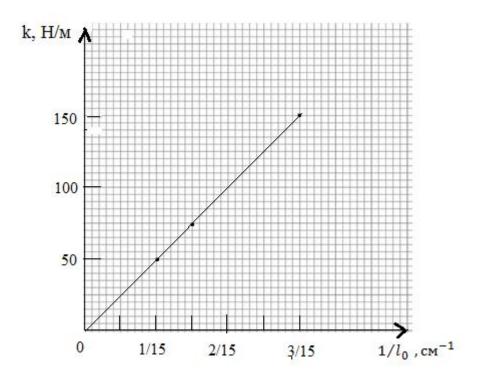


График подтверждает нашу гипотезу и проходит через 0.

е) Уравнение прямой, изображённой на предыдущем графике:

 $k = a \frac{1}{l_0}$ (3), коэффициент пропорциональности найдём из графика:

$$a = \frac{75-50}{\frac{1}{10}-\frac{1}{15}} = 750 \left(\frac{\text{H}\cdot\text{cM}}{\text{м}}\right)$$
 или $a = 7,5 \text{ H}$.

Значение a у участников олимпиады могут отличаться на ± 0 ,3 Н. Для любых значений l_0 жёсткость определяется по формуле:

$$k = 7.5 \frac{1}{l_0} (H/M) (4)$$

ж) Для
$$l_0 = 25$$
 см = 0,25 м $k = 30$ H/м.

Для $l_0 = 30$ см = 0,30 м k = 25 H/м.

Критерии оценивания

а) Построены три графика, отражающие прямо	2 балла
пропорциональную зависимость k от m	
б) Графически определены l_{01} , l_{02} , и l_{03}	1 балл
в) Записан закон Гука, получена формула (2) и	2 балла
рассчитаны k_1 , k_2 и k_3	
г) Построен график k от l_0 и высказана гипотеза, что	1 балл
$k \sim \frac{1}{l_0}$	
д) Построен график k от $1/l_0$	1 балла
е) Обоснованно получена формула (4)	2 балл
ж) Правильно рассчитаны жёсткости для $l_0 = 25$ см и $l_0 =$	1балл
30 см.	
Всего	10 баллов

Примечание: результаты вычислений участников олимпиады могут отличаться от наших на $\pm 5\%$