ВСЕРОССИЙСКОЙ ОЛИМПИАДЫ ШКОЛЬНИКОВ ПО ФИЗИКЕ 2023 – 2024 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП 9 КЛАСС

Задача 1

Два пластилиновых шарика одновременно кидают с поверхности земли. Первый шар кидают под углом $\alpha=60^\circ$, а второй навстречу ему под углом $\beta=30^\circ$ к горизонту. Второй шар в три раза тяжелее первого. Известно, что шарики в полете слипаются. Определите, под каким углом к горизонту упадет слипшийся комок.

Решение

Чтобы шарики столкнулись в полете, вертикальный компоненты их начальных скоростей должны быть равны, то есть $V_{1y} = V_{2y} = V_y$. Зная углы бросания, можно определить

горизонтальные компоненты начальных скоростей:
$$V_{1x} = V_{1y}ctg\,\alpha = \frac{V_y}{\sqrt{3}}$$
 и $V_{2x} = -V_{2y}ctg\,\beta = -V_y\sqrt{3}$

(знаки проекций должны быть разными, поскольку по условию шарики бросают навстречу друг другу).

Воспользуемся теоремой о движения центра масс. В начальный момент компоненты скорости

центра масс равнялись
$$U_x = \frac{V_{1x} + 3V_{2x}}{4} = -V_y \frac{2}{\sqrt{3}}$$
, $U_y = \frac{V_{1y} + 3V_{2y}}{4} = V_y$. Поскольку центр масс

движется под действием внешних сил, он движется по параболе и в точке падения его вертикальная компонента скорости противоположна ее значению в начальный момент, а горизонтальная компонента остается прежней. Тогда для угла падения γ получается из

выражения
$$ctg\gamma = \frac{|U_x|}{|U_y|} = \frac{2}{\sqrt{3}}$$
, откуда $\gamma \approx 41^\circ$.

Ответ: γ ≈41°.

Критерии оценивания

Найдены связи координат скоростей двух шариков	4
Найдены проекции скоростей шаров после удара	3
Найдем угол падения комка	2
Найден ответ	1

Задача 2

Тело, свободно падающее с некоторой высоты, за время t после начала движения проходит путь в n=5 раз меньший, чем за такой же промежуток времени в конце движения. Найти высоту, с которой падало тело.

Решение

Запишем уравнение свободного падения тела

$$y(t) = \frac{gt^2}{2}.$$

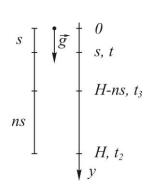
Пусть за первые t секунд тело прошло расстояние s $s = \frac{gt^2}{2}$.

Рассмотрим две точки движения:

одна когда тело проходит весь путь $H = \frac{gt_2^2}{2}$,

вторая когда время было $t_3 = t_2 - t \ H - ns = \frac{gt_3^2}{2}$.

Получилась система из 4 уравнений с 4-мя неизвестными



$$\begin{cases} s = \frac{gt^2}{2} \\ H = \frac{gt_2^2}{2} \\ H - ns = \frac{gt_3^2}{2} \\ t_3 = t_2 - t \end{cases}$$

Откуда высота с которой падало тело равно $H = \frac{9\,gt^2}{2}$.

OTBET:
$$H = \frac{9gt^2}{2}$$
.

Критерии оценивания

критерии оценивания	
Правильно выбрано расположения пройденных отрезков	3
Записана система для нахождения времени полета	3
Найдено время движения	2
Найдено высота с которого падало тело	2
Найден ответ	1

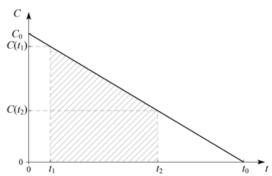
Задача 3

Теплоемкость C образца из неизвестного вещества зависит от температуры t. Эта зависимость в диапазоне температур от θ °C до θ 0°C описывается формулой: $C(t) = C_0 \left(1 + \frac{t}{t_0}\right)$, где $C_0 = 300 \, \text{Myr}/\text{°C}$, $t_0 = 100 \, \text{°C}$ Скон ко времени нотребуется на нагрев этого образиа от температури.

 $C_0=300~\mbox{Дж/}^{\circ}C$, $t_0=100^{\circ}C$. Сколько времени потребуется на нагрев этого образца от температуры $t_1=10^{\circ}C$ до $t_2=60^{\circ}C$, если тепловая мощность, подводимая к образцу, равна P=26~Bm? Теплопотерями можно пренебречь.

Решение

Для определения времени нагрева необходимо найти количество теплоты Q, требуемое для нагрева. Для случая переменной теплоемкости это значение можно определить графически, как площадь под графиком зависимости C(t) в интересующем нас диапазоне температур



Зависимость теплоемкости от температуры является линейной, поэтому участок плоскости под графиком в интервале температур $(t_1,\ t_2)$ является трапецией, высота которой равна t_2-t_1 , а основания равны $C(t_1)$ и $C(t_2)$. Количество теплоты $Q=\frac{C\left(t_1\right)+C\left(t_2\right)}{2}\left(t_2-t_1\right)=C_0\left(1-\frac{t_1+t_2}{2t_0}\right)\left(t_2-t_1\right)$. Тогда время нагрева равно $\tau=\frac{Q}{P}=C_0\left(1-\frac{t_1+t_2}{2t_0}\right)\frac{\left(t_2-t_1\right)}{P}=375\ c=6\ \text{мин}\ 15\ c$.

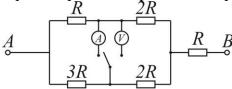
Ответ:
$$\tau = C_0 \left(1 - \frac{t_1 + t_2}{2t_0} \right) \frac{\left(t_2 - t_1 \right)}{P} = 375 \ c = 6 \$$
мин 15 c .

Критерии оценивания

Построен график зависимости тепла	3
Найдена зависимость для тепла	3
Найдено время нагрева	3
Найден ответ	1

Задача 4

В цепи, схема которой приведена на рисунке, в зависимости от положения переключателя либо амперметр показывает ток I=0,12 A, либо вольтметр показывает напряжение U=12 B. Определите напряжение U_{AB} и сопротивление резистора R. Измерительные приборы идеальные.



Решение

Если ключ замкнут на амперметр, то общее сопротивление цепи равно:

$$R_1 = \frac{3R \cdot R}{3R + R} + \frac{2R \cdot 2R}{2R + 2R} + R = \frac{11}{4}R.$$

Сила тока, текущего через всю цепь, в этом случае равна $\frac{4U_{AB}}{11R}$. Через резистор с сопротивление

2R текут одинаковые токи $\frac{2U_{AB}}{11R}$, через сопротивление R – ток $\frac{3U_{AB}}{11R}$, а через сопротивление 3R –

ток $\frac{U_{AB}}{11R}$. Значит показание амперметра равно

$$I = \frac{3U_{AB}}{11R} - \frac{2U_{AB}}{11R} = \frac{U_{AB}}{11R}.$$

Если ключ замкнут на вольтметр, то общее сопротивление цепи равно

$$R_2 = \frac{3R \cdot 5R}{3R + 5R} + R = \frac{23}{8}R.$$

Сила тока, текущего через всю цепь, в этом случае равна $\frac{8U_{AB}}{23R}$. Через резисторы с

сопротивлениями R и 2R течет ток $\frac{5U_{AB}}{23R}$, а через сопротивления 3R и 2R — ток $\frac{3U_{AB}}{23R}$. Показание

вольтметра при этом равно

$$U = 3R \cdot \frac{3U_{AB}}{23R} - R \cdot \frac{5U_{AB}}{23R} = \frac{4}{23}U_{AB}.$$

Окончательно получим:

$$U_{AB} = \frac{23}{4}U = 69B$$
, $R = \frac{U_{AB}}{11I} = \frac{23U}{44I} \approx 52,3 \ Om$.

Ответ: $U_{AB} = 69B$, $R \approx 52,3 \, OM$.

Критерии оценивания

110111011110111111111111111111111111111	
Найдено общее сопротивление для первого случая	2
Найдено значение сила тока для первого случая	1
Найдено общее сопротивление для второго случая	2
Найдено значение сила тока для второго случая	1
Найдено напряжения U_{AB}	2

Найдено значение R	1
Найден ответ	1

Залача 5

Сплошной шарик из алюминия диаметром d=1 c_M бросили в 50%-ный раствор азотной кислоты. В данных условиях с одного квадратного сантиметра поверхности растворяется 10^{-4} ε алюминия в час. Через какое время шарик полностью растворится в кислоте? Плотность алюминия $\rho=2$, 7 ε/c_M^3 .

Решение

Рассмотрим процесс коррозии. Пусть в некоторый момент времени шарик имел радиус R и площадь поверхности S, и пусть за маленький промежуток времени Δt радиус шарика вследствие коррозии уменьшился на величину ΔR . Тогда объём растворённого за это время алюминия будет равен $S\Delta R$, его масса составляет $\rho S\Delta R$. С другой стороны, масса

растворённого за время Δt алюминия равна $GS\Delta t$, где $G=10^{-4}\frac{\mathcal{C}}{c_{M}^{2}\cdot \mathcal{U}}$ — количество граммов

металла, растворяющегося за один час с одного квадратного сантиметра поверхности. Приравняем полученные выражения:

$$\rho S \Delta R = G S \Delta t .$$

Отсюда скорость уменьшения радиуса шарика:

$$\frac{\Delta R}{\Delta t} = \frac{G}{\rho}.$$

Видно, что радиус шарика уменьшается с постоянной скоростью. Ясно, что шарик растворится полностью тогда, когда изменение его радиуса ΔR станет равно половине его начального диаметра. Тогда из последней формулы получаем:

$$\tau = \frac{\rho d}{2G} = 13500 \ vacos.$$

Otbet:
$$\tau = \frac{\rho d}{2G} = 13500 \ vacob$$
.

Критерии оценивания

критерии оценивания	
Найдена связь скорости растворимости и скорость уменьшения массы шарика	5
Найдена скорость уменьшения радиуса шарика	2
Найдено время растворимости	2
Найден ответ	1